Bio-Inspired Design and Iterative Feedback Tuning Control of a Wearable Ankle Rehabilitation Robot

Author(s):  
Liang Zhou ◽  
Wei Meng ◽  
Charles Z. Lu ◽  
Quan Liu ◽  
Qingsong Ai ◽  
...  

Robotic rehabilitation for ankle injuries offers several advantages in terms of precision, force accuracy, and task-specific training. While the existing platform-based ankle rehabilitation robots tend to provide a rotation center that does not coincide with the actual ankle joint. In this paper, a novel bio-inspired ankle rehabilitation robot was designed, which is wearable and can keep the participant's shank be stationary. The robot is redundantly actuated by four motors in parallel to offer three ankle rotation degrees-of-freedom (DOFs) with sufficient range of motion (ROM) and force capacity. To control the robotic rehabilitation device operated in a repetitive trajectory training manner, a model-free robust control method in form of iterative feedback tuning (IFT) is proposed to tune the robot controller parameters. Experiments were performed on the parallel ankle rehabilitation platform to investigate the efficacy of the design and the robustness of the IFT technique under real-life rehabilitation scenarios.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Leiyu Zhang ◽  
Jianfeng Li ◽  
Mingjie Dong ◽  
Bin Fang ◽  
Ying Cui ◽  
...  

The ankle rehabilitation robot is essential equipment for patients with foot drop and talipes valgus to make up deficiencies of the manual rehabilitation training and reduce the workload of rehabilitation physicians. A parallel ankle rehabilitation robot (PARR) was developed which had three rotational degrees of freedom around a virtual stationary center for the ankle joint. The center of the ankle should be coincided with the virtual stationary center during the rehabilitation process. Meanwhile, a complete information acquisition system was constructed to improve the human-machine interactivity among the robot, patients, and physicians. The physiological motion space (PMS) of ankle joint in the autonomous and boundary elliptical movements was obtained with the help of the RRR branch and absolute encoders. The natural extreme postures of the ankle complex are the superposition of the three typical movements at the boundary motions. Based on the kinematic model of PARR, the theoretical workspace (TWS) of the parallel mechanism was acquired using the limit boundary searching method and could encircle PMS completely. However, the effective workspace (EWS) was smaller than TWS due to the physical structure, volume, and interference of mechanical elements. In addition, EWS has more clinical significance for the ankle rehabilitation. The PARR prototype satisfies all single-axis rehabilitations of the ankle and can cover most compound motions of the ankle. The goodness of fit of PMS can reach 93.5%. Hence, the developed PARR can be applied to the ankle rehabilitation widely.


2019 ◽  
Vol 12 (2) ◽  
pp. 104-124
Author(s):  
Jingang Jiang ◽  
Zhaowei Min ◽  
Zhiyuan Huang ◽  
Xuefeng Ma ◽  
Yihao Chen ◽  
...  

Background: Ankle is an important bearing joint in the human body. Unreasonable exercise patterns and exercise intensity can cause ankle injuries. This will seriously affect patients’ daily life. With the increase in the number of patients, the labor intensity of doctors is increasing. Ankle rehabilitation robot can help doctors free themselves from repetitive tasks, which is, of more practical value. Objective: To give a general summary of recent ankle rehabilitation robot and introduce the respective characteristics and development including structure type, drive type and rehabilitation training mode. Methods: This paper investigates various representative studies related to the ankle rehabilitation robot. The structure type, drive type, rehabilitation training mode and applications situation of these ankle rehabilitation robot are discussed. Results: The characteristics of different types of ankle rehabilitation robots are analyzed. This paper analyzes the main problems in its development. The solutions to the issues and the current and future research on ankle rehabilitation robot are discussed. Conclusion: The ankle rehabilitation robots are classified into motor drive type, pneumatic artificial muscle and pneumatic cylinder drive type and others. Further improvements are needed in the aspects of mechanical design, safety, virtual reality, brain-computer interface, control strategies and algorithm of bio-syncretic mechanism system of ankle rehabilitation robot. More related patents about ankle rehabilitation robot need to be developed.


Author(s):  
Prashant K. Jamwal ◽  
Shahid Hussain ◽  
Mergen H. Ghayesh ◽  
Svetlana V. Rogozina

Robots are being increasingly used by physical therapists to carry out rehabilitation treatments owing to their ability of providing repetitive, controlled, and autonomous training sessions. Enhanced treatment outcomes can be achieved by encouraging patients' active participation besides robotic assistance. Advanced control strategies are required to be designed and implemented for the rehabilitation robots in order to persuade patients to contribute actively during the treatments. In this paper, an adaptive impedance control approach is developed and implemented on a parallel ankle rehabilitation robot. The ankle robot was designed based on a parallel mechanism and actuated using four pneumatic muscle actuators (PMAs) to provide three rotational degrees-of-freedom (DOFs) to the ankle joint. The proposed controller adapts the parallel robot's impedance according to the patients' active participation to provide customized robotic assistance. In order to evaluate performance of the proposed controller, experiments were conducted with stroke patients. It is demonstrated from the experimental results that the robotic assistance decreases as a result of patients' active participation. Similarly, increased robotics assistance is recorded in response to decrease in patient's participation in the rehabilitation process. This work will aid in the further development of customized robot-assisted physical therapy of ankle joint impairment.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Qing Miao ◽  
Mingming Zhang ◽  
Congzhe Wang ◽  
Hongsheng Li

This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.


2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


2021 ◽  
Author(s):  
Amarildo Likmeta ◽  
Alberto Maria Metelli ◽  
Giorgia Ramponi ◽  
Andrea Tirinzoni ◽  
Matteo Giuliani ◽  
...  

AbstractIn real-world applications, inferring the intentions of expert agents (e.g., human operators) can be fundamental to understand how possibly conflicting objectives are managed, helping to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforcement learning (IRL) can be employed to retrieve the reward function implicitly optimized by expert agents acting in real applications. Scaling IRL to real-world cases has proved challenging as typically only a fixed dataset of demonstrations is available and further interactions with the environment are not allowed. For this reason, we resort to a class of truly batch model-free IRL algorithms and we present three application scenarios: (1) the high-level decision-making problem in the highway driving scenario, and (2) inferring the user preferences in a social network (Twitter), and (3) the management of the water release in the Como Lake. For each of these scenarios, we provide formalization, experiments and a discussion to interpret the obtained results.


Author(s):  
Na Dong ◽  
Wenjin Lv ◽  
Shuo Zhu ◽  
Donghui Li

Model-free adaptive control has been developed greatly since it was proposed. Up to now, model-free adaptive control theory has become mature and tends to be an effective solution for complex unmodeled industrial systems. In practical industrial processes, most control systems are inevitably accompanied by noise that will result in indelible error and may further cause inaccurate feedback to the output. In order to solve this kind of problem with model-free technique, this article incorporates an improved tracking differentiator into model-free adaptive control. After that, the anti-noise model-free adaptive control method with complete convergence analysis is proposed. Meanwhile, numerical simulation proves that the improved control method can quickly track a given signal with good resistance to noise interference. Finally, the effectiveness and practicability of the proposed algorithm are verified by experiments through the control of drum water level of circulating fluidized.


Sign in / Sign up

Export Citation Format

Share Document