Computer-Aided Design and Manufacturing of a Novel Maxillofacial Surgery Instrument: Application in the Sagittal Split Osteotomy

2016 ◽  
Vol 10 (4) ◽  
Author(s):  
Erol Cansiz ◽  
Fatih Turan ◽  
Yunus Ziya Arslan

Mandibular sagittal split osteotomy (SSO) is an operation performed for the correction of mandibular deformities. In this operation, sharp rotary tools are used during osteotomies and this can induce some complications. For example, if the inferior alveolar nerve is damaged, paralysis of the teeth, the lateral side of the tongue, and the corner of the lip can occur. To decrease the occurrence of such possible complications, we designed and manufactured a novel computer-assisted, patient-specific SSO guide and soft tissue retractor in our previous study. And, we first tested this apparatus on a cadaveric bone in vitro. Now, in this study, a surgical application of the instrument, which was designed and manufactured according to the requirements of the mandibular sagittal split osteotomies, was performed. This paper gives and discusses the results obtained from in vivo application of the apparatus.

2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Cynthia St. Hilaire ◽  
Hui Jin ◽  
Yuting Huang ◽  
Dan Yang ◽  
Alejandra Negro ◽  
...  

Objective: The objective of this study was to develop a patient-specific induced pluripotent stem cell (iPSC)-based disease model to understand the process by which CD73-deficiency leads to vascular calcification in the disease, Arterial Calcification due to Deficiency of CD73 (ACDC). Approach & Results: ACDC is an autosomal recessive disease resulting from mutations in the gene encoding for CD73, which converts extracellular AMP to adenosine. CD73-deficiency manifests with tortuosity and vascular calcification of the medial layer of lower-extremity arteries, a pathology associated with diabetes and chronic kidney disease. We previously identified that dermal fibroblasts isolated from ACDC patients calcify in vitro, however in vivo studies of the vasculature are limited, as murine models of CD73 deficiency do not recapitulate the human disease phenotype. Thus, we created iPSCs from ACDC patients and control fibroblasts. ACDC and Control iPSCs form teratomas when injected in immune-compromised mice, however ACDC iPSC teratomas exhibit extensive calcifications. Control and ACDC iPSCs were differentiated down the mesenchymal lineage (MSC) and while there was no difference in chondrogenesis and adipogenesis, ACDC iMSCs underwent osteogenesis sooner than control iPSC, have higher activity of tissue-nonspecific alkaline phosphatase (TNAP), and lower levels of extracellular adenosine. During osteogenic simulation, TNAP activity in ACDC cells significantly increased adenosine levels, however, not to levels needed for functional compensatory stimulation of the adenosine receptors. Inhibition of TNAP with levimisole ablates this increase in adenosine. Treatment with an A2b adenosine receptor (AR) agonist drastically reduced TNAP activity in vitro, and calcification in ACDC teratomas, as did treatment with etidronate, which is currently being tested in a clinical trial on ACDC patients. Conclusions: These results illustrate a pro-osteogenic phenotype in CD73-deficient cells whereby TNAP activity attempts to compensate for CD73 deficiency, but subsequently induces calcification that can be reversed by activation of the A2bAR. The iPSC teratoma model may be used to screen other potential therapeutics for calcification disorders.


2019 ◽  
Author(s):  
Jordan F. Hastings ◽  
Alvaro Gonzalez-Rajal ◽  
Jeremy Z.R. Han ◽  
Rachael A. McCloy ◽  
Yolande E.I. O’Donnell ◽  
...  

AbstractIdentification of clinically viable strategies for overcoming resistance to platinum chemotherapy in lung adenocarcinoma has been hampered by inappropriately tailored in vitro assays of drug response. Therefore, using a pulse model that closely recapitulates the in vivo pharmacokinetics of platinum therapy, we profiled cisplatin-induced signalling, DNA damage and apoptotic responses across a panel of lung adenocarcinoma cell lines. By coupling this data with real-time, single cell imaging of cell cycle and apoptosis, we show that TP53 mutation status influenced the mode of cisplatin induced cell cycle arrest, but could not predict cisplatin sensitivity. In contrast, P70S6K-mediated signalling promoted resistance by increasing p53/p63 and p21 expression, reducing double-stranded DNA breaks and apoptosis. Targeting P70S6K sensitised both TP53 wildtype and null lines to cisplatin, but not TP53 mutant lines. In summary, using in vitro assays that mimic in vivo pharmacokinetics identified P70S6K as a robust mediator of cisplatin resistance and highlighted the importance of considering somatic mutation status when designing patient-specific combination therapies.


2019 ◽  
Author(s):  
Teresa G Krieger ◽  
Stephan M Tirier ◽  
Jeongbin Park ◽  
Tanja Eisemann ◽  
Heike Peterziel ◽  
...  

AbstractGlioblastoma multiforme (GBM) are devastating neoplasms with high invasive capacity. GBM has been difficult to study in vitro. Therapeutic progress is also limited by cellular heterogeneity within and between tumors. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived glioblastoma cell invasion. By tissue clearing and confocal microscopy, we show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Single-cell RNA-seq of GBM cells before and after co-culture with organoid cells reveals transcriptional changes implicated in the invasion process that are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Functional therapeutic targets are identified by an in silico receptor-ligand pairing screen detecting potential interactions between GBM and organoid cells. Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection at a time scale amenable to clinical practice.


2020 ◽  
Vol 10 (3) ◽  
pp. 66
Author(s):  
Kateryna Yatsenko ◽  
Iryna Lushnikova ◽  
Alina Ustymenko ◽  
Maryna Patseva ◽  
Iryna Govbakh ◽  
...  

Brain inflammation is a key event triggering the pathological process associated with many neurodegenerative diseases. Current personalized medicine and translational research in neurodegenerative diseases focus on adipose-derived stem cells (ASCs), because they are patient-specific, thereby reducing the risk of immune rejection. ASCs have been shown to exert a therapeutic effect following transplantation in animal models of neuroinflammation. However, the mechanisms by which transplanted ASCs promote cell survival and/or functional recovery are not fully understood. We investigated the effects of ASCs in in vivo and in vitro lipopolysaccharide (LPS)-induced neuroinflammatory models. Brain damage was evaluated immunohistochemically using specific antibody markers of microglia, astroglia and oligodendrocytes. ASCs were used for intracerebral transplantation, as well as for non-contact co-culture with brain slices. In both in vivo and in vitro models, we found that LPS caused micro- and astroglial activation and oligodendrocyte degradation, whereas the presence of ASCs significantly reduced the damaging effects. It should be noted that the observed ASCs protection in a non-contact co-culture suggested that this effect was due to humoral factors via ASC-released biomodulatory molecules. However, further clinical studies are required to establish the therapeutic mechanisms of ASCs, and optimize their use as a part of a personalized medicine strategy.


2019 ◽  
Vol 56 (8) ◽  
pp. 548-556 ◽  
Author(s):  
Malte Lenders ◽  
Franciska Stappers ◽  
Christoph Niemietz ◽  
Boris Schmitz ◽  
Michel Boutin ◽  
...  

BackgroundPatients with Fabry disease (FD) and amenable mutations can be treated with the chaperone migalastat to restore endogenous α-galactosidase A (AGAL) activity. However, certain amenable mutations do not respond biochemically in vivo as expected. Here, we aimed to establish a patient-specific and mutation-specific cell model to evaluate the amenability to chaperone therapy in FD.MethodsSince current tests to determine amenability are limited to heterologous mutation expression in HEK293T cells with endogenous AGAL activity, we generated CRISPR/Cas9-mediated AGAL-deficient HEK293T cells as a basis for mutant overexpression. Furthermore, primary urinary cells from patients were isolated and immortalised as a patient-specific cell model system to evaluate the amenability to chaperone therapy.ResultsUnder treatment (>13 months), carriers of p.N215S (n=6) showed a significant reduction of plasma lyso-Gb3 (p<0.05). Lyso-Gb3 levels in carriers of p.L294S increased (p<0.05) and two patients developed severe albuminuria. Both missense mutations were amenable in wild-type HEK293T cells (p<0.05), but presented different responses in CRISPR/Cas9-mediated AGAL knockouts and immortalised urinary cells. Chaperone incubation resulted in increased AGAL activity (p<0.0001) and intracellular globotriaosylceramide (Gb3) reduction (p<0.05) in immortalised p.N215S cells but not in p.L294S and IVS2+1 G>A cells.ConclusionWe conclude that repeated AGAL activity measurements in patients’ white blood cells are mandatory to assess the in vivo amenability to migalastat. Plasma lyso-Gb3 might be an appropriate tool to measure the biochemical response to migalastat. Patients with low AGAL activities and increasing lyso-Gb3 levels despite in vitro amenability might not benefit sufficiently from chaperone treatment.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


Gut ◽  
2015 ◽  
Vol 66 (3) ◽  
pp. 454-463 ◽  
Author(s):  
Daniele Mennonna ◽  
Cristina Maccalli ◽  
Michele C Romano ◽  
Claudio Garavaglia ◽  
Filippo Capocefalo ◽  
...  

ObjectivePatient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies.DesignWe undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions.ResultsSeveral unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+and CD4+T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo.ConclusionsThese results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.


2020 ◽  
Vol 22 (8) ◽  
pp. 1138-1149 ◽  
Author(s):  
Teresa G Krieger ◽  
Stephan M Tirier ◽  
Jeongbin Park ◽  
Katharina Jechow ◽  
Tanja Eisemann ◽  
...  

Abstract Background Glioblastoma (GBM) consists of devastating neoplasms with high invasive capacity, which have been difficult to study in vitro in a human-derived model system. Therapeutic progress is also limited by cellular heterogeneity within and between tumors, among other factors such as therapy resistance. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived GBM cell invasion. Methods This study combined tissue clearing and confocal microscopy with single-cell RNA sequencing of GBM cells before and after co-culture with organoid cells. Results We show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Transcriptional changes implicated in the invasion process are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Potential interactions between GBM and organoid cells identified by an in silico receptor–ligand pairing screen suggest functional therapeutic targets. Conclusions Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection on a time scale amenable to clinical practice.


Sign in / Sign up

Export Citation Format

Share Document