scholarly journals T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes

Gut ◽  
2015 ◽  
Vol 66 (3) ◽  
pp. 454-463 ◽  
Author(s):  
Daniele Mennonna ◽  
Cristina Maccalli ◽  
Michele C Romano ◽  
Claudio Garavaglia ◽  
Filippo Capocefalo ◽  
...  

ObjectivePatient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies.DesignWe undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions.ResultsSeveral unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+and CD4+T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo.ConclusionsThese results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.

Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3800-3806 ◽  
Author(s):  
Chia-Rui Shen ◽  
Abdel-Rahman Youssef ◽  
Anne Devine ◽  
Laura Bowie ◽  
Andrew M. Hall ◽  
...  

Abstract The major target of the pathogenic red blood cell (RBC) autoantibodies in New Zealand black (NZB) mice is the anion channel protein band 3, and CD4+ T cells from NZB mice respond to band 3. Here, we demonstrate that a band 3 peptide 861-875, which is the predominant sequence recognized by NZB T cells in vitro, bears a dominant helper epitope able to modulate the autoimmune hemolyic anemia in vivo. The development of RBC-bound autoantibodies and anemia was accelerated in NZB mice injected with peptide 861-874, which is relatively insoluble, and inhalation of the peptide primed T cells for both peptide 861-874 and band 3 responses. By contrast, inhalation of a soluble analog (Glu861, Lys875) of peptide 861-874 deviated the autoimmune response toward a T helper-2 (Th2) profile, with marked increases in the ratio of interleukin-4 to interferon-γ produced by splenic T cells responding in vitro to either peptide 861-874 or band 3. Moreover, in mice that had received such treatment, the proportion of RBC-bound immunoglobulin G (IgG) molecules that were of the Th2-associated IgG1 isotype was also increased, and anemia was less severe. It is concluded that NZB autoimmune hemolytic anemia is helper dependent and that nasal administration of different peptides containing the dominant T-cell epitope can have potentially detrimental or beneficial effects on the disease. (Blood. 2003; 102:3800-3806)


Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 3842-3852 ◽  
Author(s):  
Marina Deschamps ◽  
Patricia Mercier-Lethondal ◽  
Jean Marie Certoux ◽  
Carole Henry ◽  
Bruno Lioure ◽  
...  

AbstractIn our previous phase 1/2 study aimed at controlling graft-versus-host disease, 12 patients received Herpes simplex virus thymidine kinase (HSV-tk+)/neomycin phosphotransferase (NeoR+)–expressing donor gene-modified T cells (GMCs) and underwent an HLA-identical sibling T-cell–depleted bone marrow transplantation (BMT). This study's objective was to follow up, to quantify, and to characterize persistently circulating GMCs more than 10 years after BMT. Circulating GMCs remain detectable in all 4 evaluable patients. However, NeoR- and HSV-tk–polymerase chain reaction (PCR) differently quantified in vivo counts, suggesting deletions within the HSV-tk gene. Further experiments, including a novel “transgene walking” PCR method, confirmed the presence of deletions. The deletions were unique, patient-specific, present in most circulating GMCs expressing NeoR, and shown to occur at time of GMC production. Unique patient-specific retroviral insertion sites (ISs) were found in all GMCs capable of in vitro expansion/cloning as well. These findings suggest a rare initial gene deletion event and an in vivo survival advantage of rare GMC clones resulting from an anti–HSV-tk immune response and/or ganciclovir treatment. In conclusion, we show that donor mature T cells infused with a T-cell–depleted graft persist in vivo for more than a decade. These cells, containing transgene deletions and subjected to significant in vivo selection, represent a small fraction of T cells infused at transplantation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3216-3216
Author(s):  
Hiroshi Fujiwara ◽  
Satoshi Okumura ◽  
Yoshihiro Miyahara ◽  
Linan Wan ◽  
Isao Tawara ◽  
...  

Background: Adult T-cell leukemia/lymphoma (ATL) is a refractory peripheral T-cell malignancy caused by human T-lymphotropic virus type 1 (HTLV-1) infection. Although only allogeneic hematopoietic stem cell transplantation (allo-HSCT) displaying the graft-vs. ATL (GvATL) can bring durable remission, allo-HSCT is largely ineligible for newly diagnosed ATL patients due to disease aggressiveness and advanced age-related conditions. Thus, a novel treatment with safety and efficacy instead of allo-HSCT still remains an unmet need, and a cellular immunotherapy using TCR or CAR gene-modified immune cells exerting GvATL could be such an option. However, to generate those effector cells from autologous T cells of heavily pre-treated ATL patients faces many obstacles. To circumvent those hurdles, an employment of unconventional allogeneic Vγ9/δ2-T cells which are potentially free from the risk of GVHD could provide greater treatment opportunity for ATL patients due to highly extended donor availability. Taking above, here, we have newly devised an adoptive immunotherapy using a novel HTLV-1 p40Tax-specific TCR gene-modified allogeneic Vγ9/δ2 T cells against ATL. Methods: After written informed conscent, we firstly established novel HLA-A24 restricted TCR-α/β genes from HTLV-1 P40Tax301-309 (SFHSLHLLF)/HLA-A24 tetramer-positive peripheral CD8+T-lymphocytes of ATL patinets in durable remission using a single cell cloning method. Then, we confirmed that T cells gene-modified with these TCR-α/β genes exerted the epitope-specific and HLA-A24-restricted responses. Next, in order to achieve highly stable expression of this TCR-α/β heterodimer on gene-modified Vγ9/δ2-T cells, we newly developed a retroviral vector co-expressing TCR-α/β and CD8 α/β genes using self-cleaving P2A and E2A peptides. Using this vector, allogeneic Vγ9/δ2-T cells from healthy donors numerously expanded with high purity in our novel culture system were subjected to gene-transfer to express relevant TCR α/β complex. Thereafter, we asssessed target-reactive cytokine production and cytocidal activity mediated by those gene-modified allogeneic Vγ9/δ2-T cells both in vitro and in vivo. Finally, we additionally assessed a potential risk of GVHD using intravenous administration of another TCR gene-modified Vγ9/δ2 T-cells in vivo. Results: To start with PBMCs from healthy donors, allogeneic Vγ9/δ2-T cells were stably multiplied greater than thousandfold with a quite high purity (≥95%) using our novel bisphosphonate derivative PTA (tetrakis-pivaloyloxymethyl2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate) combined with both 25 ng/ml of IL-7 and IL-15 in culture for 8 to 10 days. The stable expression of introduced TCR α/β heterodimer on Vγ9/δ2-T cells were successfully achieved by co-expression of CD8 α/β molecule. Those gene-modified Vγ9/δ2-T cells successfully recognized target peptide (SFHSLHLLF) in an HLA-A24 restricted fashion, and similarly demonstrated a cytocidal activity both in vitro and in vivo against HLA-A24 positive HTLV-1 infected cell lines (TL-Su and ILT#Hod), but not HLA-A24-negtive/Tax-positive cell line ILT#37 or HLA-A24-positve/Tax-negative cell line ATN-1. Furthermore, intravenously administered those TCR gene-modified Vγ9/δ2-T cells quickly and durably eradicated luciferase-gene modified TL-Su cells, but not ATN-1 cells in xenografted immunodeficient (NOG) mice, examined by in vivo imaging system. Finally, infused HLA-A2 restricted and NY-ESO-1 specific TCR (G50) gene-modified Vγ9/δ2-T cells exerted durable antitumor activity without causing GVHD using NOG mice xenografted with HLA-A2 positive melanoma cell line cells (NW-MEL-38). Conclusions: Our preclinical observations here obviously demonstrated the potential utility of TCR-α/β gene-modified allogeneic Vγ9/δ2-T cells for the treatment of ATL without causing GVHD. Further studies regarding biological behaviors of HTLV-1 Tax specific TCR-α/β gene-modified allogeneic Vγ9/δ2-T cells following target recognition in vivo are warranted, however, based on these lines of evidence and currently conducting assessments using clinical samples, we are planning to launch a novel clinical trial, particularly focusing on the applicability of HLA partially matched relative donors, as the source of gene-modified allogeneic Vγ9/δ2-T cells, which could highly extend the donor availability. Disclosures Fujiwara: BrightPath Biotherapeutics, Co.,Ltd.: Other: member of the department endowed by BrightPath Bio. Okumura:BrightPath Biotherapeutics, Co.,Ltd.: Other: member of the department endowed by BrightPth Bio.. Miyahara:BirghtPath Biotherapeutics, Co., Ltd.: Other: member of the department endowed by BrightPath Bio.. Wan:BrightPath Biotherapeutics, Co., Ltd.: Other: member of the department endowed by BrightPath Bio.. Tawara:Astellas Pharma: Research Funding; Ono Pharmaceutical: Research Funding; Kyowa Hakko Kirin: Honoraria, Research Funding. Shiku:BrightPath Biotherapeutics, Co., Ltd.: Other: Chair of the department endowed by BrightPath Bio..


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2655-2661 ◽  
Author(s):  
Devi K. Banerjee ◽  
Madhav V. Dhodapkar ◽  
Elyana Matayeva ◽  
Ralph M. Steinman ◽  
Kavita M. Dhodapkar

AbstractCD4+CD25+FOXP3+ regulatory T cells (Treg's) play an important role in the maintenance of immune tolerance. The mechanisms controlling the induction and maintenance of Treg's in humans need to be defined. We find that human myeloid dendritic cells (DCs) are superior to other antigen presenting cells for the maintenance of FOXP3+ Treg's in culture. Coculture of DCs with autologous T cells leads to an increase in both the number of Treg's, as well as the expression of FOXP3 protein per cell both in healthy donors and myeloma patients. DC-mediated expansion of FOXP3high Treg's is enhanced by endogenous but not exogenous interleukin-2 (IL-2), and DC-T-cell contact, including the CD80/CD86 membrane costimulatory molecules. DCs also stimulate the formation of Treg's from CD25- T cells. The efficacy of induction of Treg's by DCs depends on the nature of the DC maturation stimulus, with inflammatory cytokine-treated DCs (Cyt-DCs) being the most effective Treg inducers. DC-induced Treg's from both healthy donors and patients with myeloma are functional and effectively suppress T-cell responses. A single injection of cytokine-matured DCs led to rapid enhancement of FOXP3+ Treg's in vivo in 3 of 3 myeloma patients. These data reveal a role for DCs in increasing the number of functional FOXP3high Treg's in humans.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 547-547
Author(s):  
Serena Scala ◽  
Luca Biasco ◽  
Luca Basso Ricci ◽  
Francesca Dionisio ◽  
Cristina Baricordi ◽  
...  

Abstract A deeper understanding of T lymphocytes survival and differentiation potential in humans is paramount for the development of effective gene/cell therapies based on T-cell engineering. We here performed a comprehensive study of T-cells dynamics and plasticity in humans by a unique combination of phenotypic/functional studies and high-throughput integration sites (IS) analyses. We analyzed samples from hematopoietic stem cells (HSC) (n=10) or mature lymphocytes (PBL) gene therapy (GT) (n=4) treated ADA (adenosine deaminase) deficient-SCID patients. For comparative analyses, we also collected data from pediatric (n=19) and adult (n=52) healthy donors (HD), and from bone marrow transplanted patients (BMT) with primary immunodeficiencies (n=10, 4 with ADA-SCID). We observed that vector-positive CD62L+/CD45RA+ putative T naïve cells were detectable 12 years after last infusion of gene-corrected lymphocytes in peripheral blood of PBL-GT patients that lack the support of transduced lymphocytes precursors. We then unveiled that the vast majority of these CD62L+/CD45RA+ cells (80.3%) in PBL-GT patients could be actually classified phenotypically (CD95, IL2Rβ and IL7Rα surface expression) and functionally (IFNγ production and aCD3/aCD28 in vitro differentiation) as active long-lasting T memory stem cells (Tscm). The peculiar Tscm frequency found in PBL-GT patients was most likely due to a combinatorial in vitro and in vivo effect. Indeed, by a series of in vitro assays, we showed that Tscm relative enrichment in CD45RA+CD62L+ compartment have occurred during the in vitro manipulation of T cells before infusion. Additionally, we found higher-then-normal Tscm contribution among CD45RA+/CD62L+ cells even in ADA-SCID patients receiving HSC-GT and BMT, suggesting a role of disease background on in vivo Tscm persistence. Analyzing our cohorts of healthy donors and treated individuals we were able to further correlate Tscm contribution in vivo with age, conditioning regimen, disease background, cell source, and long-term T-cell reconstitution. One unique aspect of our study consisted in the opportunity to track Tscm clonal dynamics in vivo in humans since each gene-corrected cell infused in our GT patients is univocally and permanently tagged by a retroviral integration site.To perform in vivo molecular tracing of individual T-cell clones we sorted T naïve, Tscm, central memory and effector memory subtypes. We then collected from these subpopulations, by LAM-PCR+Illumina-Miseq sequencing, 2.584.137 integration sites (IS) sequences mapped to 1.746 unique chromosomal positions, corresponding to 910 integrations from 5 HSC-GT patients in vivo, 79 integrations from 2 PBL-GT samples of transduced cell products prior to infusion and 754 integrations from 4 PBL-GT patients in vivo. Firstly, to establish a relationship between precursors and terminally differentiated T cells we searched for the presence of identical insertion sites detected in multiple T-cell subtypes, applying stringent analytical filters for cross-contaminations. Strikingly, the level of shared integrations in each subtype was directly correlated to its stage of differentiation with Tscm, isolated from PBL-GT patients, showing the highest proportion of integration sites shared with the other T-cell subsets. Importantly, the results of the same analysis performed on HSC-GT patients were outstandingly coherent with the progressive developmental model of memory T-cell differentiation. We then assessed the survival of individual Tscm clones by performing a longitudinal IS analysis of different T-cell subtypes isolated from 3 PBL-GT patients over a 2 to 5 years timeframe up to 12 years after last infusion. We were able to formally prove the persistence of individual Tscm by re-capturing identical IS tagging specific Tscm clones in two independent timepoints in a 5- years window. Importantly, the same IS were also detected in multiple T-cell subtypes, representing the best indirect evidence that these clones were endowed with long-term precursor activity. We also documented, by IS sequencing reads, the long-term polyclonal composition of each subtype and we did not observe enrichment for IS flanking proto-oncogenes. Overall, this study validates, for the first time in humans, the safe and functional decade-long survival of engineered Tscm, paving the way for their future application in clinical settings. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2001-2001 ◽  
Author(s):  
Thomas Stuebig ◽  
Christine Wolschke ◽  
Haefaa Alchalby ◽  
Francis Ayuk ◽  
Marion Heinzelmann ◽  
...  

Abstract Myelofibrosis (MF) is a clonal myeloproliferative neoplasm, in which the JAK2-V617F mutation is frequently observed. The appearance in up to 50% of the cases makes the JAK2 mutation attractive as therapeutical target. In 2012 Ruxolitinib (Ruxo) a pan-JAK inhibitor was approved for the treatment of MF and showed efficacy in disease treatment, irrespectively of the JAK2V617 mutation status. Currently allogeneic stem cell transplantation (allo SCT) remains the only curative treatment option for MF. To further improve transplant outcome in MF reduction of spleen size and constitutional symptoms prior transplantation is a reasonable target. Harnessing graft versus myelofibrosis post transplantation by immune-modulating drugs may help to reduce the risk of relapse. Ruxolitinib may be used as pre- and post-transplantation drug to improve transplant outcome. However the impact of Ruxolitinib on the immune system, especially on T-cells, is poorly understood. Here we investigated the effects of Ruxolitinib on T-cells in vivo and in vitro. T-cells from healthy donors were isolated by magnetic cell sorting to pan CD3+, CD4+ and CD8+ fraction. All three different cell subsets were cultured with different dosages of Ruxolitinib (100, 250, 500, 750nM and 1µM) for additional 48h. Thereafter cells were analysed for cell growth, cell death, RNA expression, immune phenotype. Additionally, immune profiles of 9 patients were analysed for the changes of the T-cell compartment during the treatment with Ruxolitinib over a period of 3 weeks T –cells from healthy donors showed a dosage dependent impairment in the proliferation capacity compared to non-treated control cells (4.1x106 CD3 cells /ml vs. 1.9x106 CD3 cells /ml, p<0.05), additionally KI67 expression was reduced from 48% in control cells to 12% in 100nM treated CD3 cells and 9% in 500nM treated CD3 cells, p<0.05. Strikingly apoptotic cell death increased from 11% in control cells to 43% and 48% in 100nM and 500nM Ruxo treated cells, p<0.03. Analysing the immune phenotype of Ruxo treated CD3, CD4 and CD8 cells we found a significant reduction in the expression of activation marker like CD25 and HLA-DR (38% vs. 6% and 4.5% respectively, p<0.05 and 63% vs. 47% and 40% respectively, p<0.05). Furthermore, we found that the effector cells, marked by CCR7/CD45RA expression, decreased in the CD8 compartment from 22% to 10.5% and 7.8% respectively, p<0.05. When analysing regulatory T-cells we also observed a decrease in a dose dependent manner (4% vs. 1.2% and 0.8%, p=0.05). While control Treg showed a KI67 expression of >60%, Ruxo (100nM) treated T-reg did not expressed KI67. Likewise to CD8 effector cells and Tregs we found a decrease in pro-inflammatory TH1 and TH17 cells in vitro (27% vs. 14% and 12% for TH1 cells and 6% vs. 4% and 4% for TH17 cells). Next, we analysed mRNA expression and found that pro-inflammatory cytokines like IL23, IL18, IL7 were down regulated after Ruxo treatment. To in contrast to pro- inflammatory cytokines, p53 and cell cycle inhibitor of the cip/waf locus showed to be up regulated in CD3 and CD4 cells suggesting that the observed increase in apoptosis in T-cells is mediated by p53. We next investigated the impact of Ruxolitinib on T-cells in patients. Therefore we analysed the blood of patients treated with Ruxolitinib in weekly intervals. Likewise to in vitro CD3 cells showed a decrease which turned to be significant after two and three weeks of treatment (1560/µl vs. 688/µl and 410/µl, p<0.05), this was mainly through the reduction of CD8+ T-cells (630/µl before treatment vs. 250/µl at week 2 and 200/µl at week 3, p <0.05). We also observed a decrease of CD3+/ HLA-DR+ (as activation marker) from 355/µl before to 130/µl and 70/µl however this did not reached statistical significance. The same was found for Tregs in vivo (5.6% vs. 2.3% and 1.9%, respectively). These data argue that treatment of T-cells by Ruxolitinib impairs their proliferation capacity by inducing apoptosis through an up regulation of p53. This increase of cell death applies all analysed T-cell compartments, and thereby may explains why Ruxo treated T-cells were less able to show a pro-inflammatory as well as regulatory phenotype. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Leukemia ◽  
2021 ◽  
Author(s):  
Kinan Alhallak ◽  
Jennifer Sun ◽  
Katherine Wasden ◽  
Nicole Guenthner ◽  
Julie O’Neal ◽  
...  

AbstractT-cell-based immunotherapy, such as CAR-T cells and bispecific T-cell engagers (BiTEs), has shown promising clinical outcomes in many cancers; however, these therapies have significant limitations, such as poor pharmacokinetics and the ability to target only one antigen on the cancer cells. In multiclonal diseases, these therapies confer the development of antigen-less clones, causing tumor escape and relapse. In this study, we developed nanoparticle-based bispecific T-cell engagers (nanoBiTEs), which are liposomes decorated with anti-CD3 monoclonal antibodies (mAbs) targeting T cells, and mAbs targeting the cancer antigen. We also developed a nanoparticle that targets multiple cancer antigens by conjugating multiple mAbs against multiple cancer antigens for T-cell engagement (nanoMuTEs). NanoBiTEs and nanoMuTEs have a long half-life of about 60 h, which enables once-a-week administration instead of continuous infusion, while maintaining efficacy in vitro and in vivo. NanoMuTEs targeting multiple cancer antigens showed greater efficacy in myeloma cells in vitro and in vivo, compared to nanoBiTEs targeting only one cancer antigen. Unlike nanoBiTEs, treatment with nanoMuTEs did not cause downregulation (or loss) of a single antigen, and prevented the development of antigen-less tumor escape. Our nanoparticle-based immuno-engaging technology provides a solution for the major limitations of current immunotherapy technologies.


Sign in / Sign up

Export Citation Format

Share Document