scholarly journals Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics

2019 ◽  
Author(s):  
Teresa G Krieger ◽  
Stephan M Tirier ◽  
Jeongbin Park ◽  
Tanja Eisemann ◽  
Heike Peterziel ◽  
...  

AbstractGlioblastoma multiforme (GBM) are devastating neoplasms with high invasive capacity. GBM has been difficult to study in vitro. Therapeutic progress is also limited by cellular heterogeneity within and between tumors. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived glioblastoma cell invasion. By tissue clearing and confocal microscopy, we show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Single-cell RNA-seq of GBM cells before and after co-culture with organoid cells reveals transcriptional changes implicated in the invasion process that are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Functional therapeutic targets are identified by an in silico receptor-ligand pairing screen detecting potential interactions between GBM and organoid cells. Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection at a time scale amenable to clinical practice.

2020 ◽  
Vol 22 (8) ◽  
pp. 1138-1149 ◽  
Author(s):  
Teresa G Krieger ◽  
Stephan M Tirier ◽  
Jeongbin Park ◽  
Katharina Jechow ◽  
Tanja Eisemann ◽  
...  

Abstract Background Glioblastoma (GBM) consists of devastating neoplasms with high invasive capacity, which have been difficult to study in vitro in a human-derived model system. Therapeutic progress is also limited by cellular heterogeneity within and between tumors, among other factors such as therapy resistance. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived GBM cell invasion. Methods This study combined tissue clearing and confocal microscopy with single-cell RNA sequencing of GBM cells before and after co-culture with organoid cells. Results We show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Transcriptional changes implicated in the invasion process are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Potential interactions between GBM and organoid cells identified by an in silico receptor–ligand pairing screen suggest functional therapeutic targets. Conclusions Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection on a time scale amenable to clinical practice.


2020 ◽  
Author(s):  
Yun Gong ◽  
Junxiao Yang ◽  
Xiaohua Li ◽  
Cui Zhou ◽  
Yu Chen ◽  
...  

AbstractOsteoblasts are multifunctional bone cells, which play essential roles in bone formation, angiogenesis regulation, as well as maintenance of hematopoiesis. Although both in vivo and in vitro studies on mice have identified several potential osteoblast subtypes based on their different transition stages or biological responses to external stimuli, the categorization of primary osteoblast subtypes in vivo in humans has not yet been achieved. Here, we used single-cell RNA sequencing (scRNA-seq) to perform a systematic cellular taxonomy dissection of freshly isolated human osteoblasts. Based on the gene expression patterns and cell lineage reconstruction, we identified three distinct cell clusters including preosteoblasts, mature osteoblasts, and an undetermined rare osteoblast subpopulation. This novel subtype was mainly characterized by the nuclear receptor subfamily 4 group A member 1 and 2 (NR4A1 and NR4A2), and its existence was confirmed by immunofluorescence staining. Trajectory inference analysis suggested that the undetermined cluster, together with the preosteoblasts, are involved in the regulation of osteoblastogenesis and also give rise to mature osteoblasts. Investigation of the biological processes and signaling pathways enriched in each subpopulation revealed that in addition to bone formation, preosteoblasts and undetermined osteoblasts may also regulate both angiogenesis and hemopoiesis. Finally, we demonstrated that there are systematic differences between the transcriptional profiles of human osteoblasts in vivo and mouse osteoblasts both in vivo and in vitro, highlighting the necessity for studying bone physiological processes in humans rather than solely relying on mouse models. Our findings provide novel insights into the cellular heterogeneity and potential biological functions of human primary osteoblasts at the single-cell level, which is an important and necessary step to further dissect the biological roles of osteoblasts in bone metabolism under various (patho-) physiological conditions.


2018 ◽  
Author(s):  
Dvir Aran ◽  
Agnieszka P. Looney ◽  
Leqian Liu ◽  
Valerie Fong ◽  
Austin Hsu ◽  
...  

AbstractMyeloid cells localize to peripheral tissues in a wide range of pathologic contexts. However, appreciation of distinct myeloid subtypes has been limited by the signal averaging inherent to bulk sequencing approaches. Here we applied single-cell RNA sequencing (scRNA-seq) to map cellular heterogeneity in lung fibrosis induced by bleomycin injury in mice. We first developed a computational framework that enables unbiased, granular cell-type annotation of scRNA-seq. This approach identified a macrophage subpopulation that was specific to injured lung and notable for high expression of Cx3cr1+ and MHCII genes. We found that these macrophages, which bear a gene expression profile consistent with monocytic origin, progressively acquire alveolar macrophage identity and localize to sites of fibroblast accumulation. Probing their functional role, in vitro studies showed a trophic effect of these cells on fibroblast activation, and ablation of Cx3cr1-expressing cells suppressed fibrosis in vivo. We also found by gene set analysis and immunofluorescence that markers of these macrophages were upregulated in samples from patients with lung fibrosis compared with healthy controls. Taken together, our results uncover a specific pathologic subgroup of macrophages with markers that could enable their therapeutic targeting for fibrosis.


Blood ◽  
2021 ◽  
Author(s):  
Shu Sun ◽  
Chen Jin ◽  
Jia Si ◽  
Ying Lei ◽  
Kunying Chen ◽  
...  

Megakaryocytes (MKs), the platelet progenitor cell, play important roles in hematopoietic stem cell (HSC) maintenance and immunity. However, it is not known whether these diverse programs are executed by a single population or by distinct subsets of cells. Here, we manually-isolated primary CD41+ MKs from the bone marrow (BM) of mice and human donors based on ploidy (2N-32N), performed single-cell RNA sequencing analysis. We found that cellular heterogeneity existed within three distinct subpopulations possessing gene signatures related to platelet-generation, HSC niche interaction, and inflammatory responses, respectively. In situ immunostaining of mouse BM demonstrated that platelet-generation and HSC-niche related MKs were physically in close proximity to blood vessels and HSCs, respectively. Proplatelets, which could give rise to platelets under the blood shear forces, were predominantly formed on platelet-generation subset. Remarkably, the inflammatory responses subpopulation, consisting generally of low-ploidy LSP1+ and CD53+ MKs (≤8N), represented approximately 5% of total MKs in the BM. These MKs could specifically respond to pathogen infections in mice. Rapid expansion of this population was accompanied by strong upregulation of a pre-existing PU.1 and IRF-8-associated monocytic-like transcriptional program involved in pathogen recognition and clearance, as well as antigen presentation. Consistently, isolated primary CD53+ cells were capable to engulf and digest bacteria and to stimulate T cells in vitro. Together, our findings uncover new molecular, spatial, and functional heterogeneity within MKs in vivo and demonstrate the existence of a specialized MK subpopulation that may act as a new type of immune cell.


2021 ◽  
Author(s):  
Anna Allué-Guardia ◽  
Andreu Garcia-Vilanova ◽  
Angélica M. Olmo-Fontánez ◽  
Jay Peters ◽  
Diego J. Maselli ◽  
...  

AbstractTuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb), resulted in almost 1.4 million deaths in 2019 and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M.tb comes in close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M.tb upon contact, defining subsequent M.tb-host cell interactions and infection outcomes in vitro and in vivo. We also demonstrated that ALF from 60+ year old elders (E-ALF) vs. healthy 18- to 45-year-old adults (A-ALF) is dysfunctional with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay demonstrates that M.tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M.tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M.tb exposure to E-ALF shows lesser transcriptional response, with most of the M.tb genes unchanged or downregulated. Overall, this study indicates that M.tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status determined by factors such as age might play an important role in determining infection outcome.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 704-704
Author(s):  
Luca Vincenzo Cappelli ◽  
Danilo Fiore ◽  
Jude M Phillip ◽  
Liron Yoffe ◽  
Filomena Di Giacomo ◽  
...  

Abstract Background. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with few innovative treatment options. This is also contributed by the lack of models capable of capturing the complexity of the tumor and its microenvironment. Aims. To identify patient-specific vulnerabilities and novel therapeutic strategies in T-ALL and interrogate the mechanisms of the crosstalk between leukemic and stromal elements. Methods. We established a drug-testing platform using patient-derived-tumor-xenografts (PDTX) and a mixed-culture approach using E4ORF1-transduced endothelial cells (ECs) (Seandel M et al, PNAS 2008) to overcome host-mediated chemoresistance. We performed functional experiments using total and single-cell RNA sequencing. Results. First, we established a battery of 22 T-ALL PDTX models that matched both phenotypically (immune-histochemistry, flow cytometry) and genotypically (TCR rearrangement, transcriptome) with the primary patients' samples. We then challenged these models (n=14 samples belonging to different PDTX and serial passages within each model) with a library of compounds (n=433) targeting redundant proteins (n=634). Unsupervised clustering and Principal Component Analysis (PCA) demonstrated two clusters of T-ALL samples based on differential drug susceptibility. We could at least partially correlate these differences to specific transcriptomic signatures predictive of drug response (Figure 1A). We then defined a group of pan-active compounds across all models (n=40), which we validated using an independent screening with/without ECs (Figure 1B). We found that ECs counteracted the activity of selected compounds (i.e. TSA, THZ1 and MLN2238). By PCA, we observed distinct response profiles based on different T-ALL models. We vectorized the EC-rescue and found that the direction was the same across all 3 models tested, indicating that it relied on similar mechanisms regardless of model identity. Based on the known role of IGF1-IGFR1 as a supportive EC-rescue axis (Medyouf H et al, J Exp Med 2011), we performed the same screening with/without recombinant IGFBP-7 (500 ng/mL), a decoy IGF1 molecule. Remarkably, IGFBP-7 completely or partially abrogated the EC-mediated rescue of selected compounds [enzastaurin (PKC-β inhibitor), SC144 (GP130 inhibitor), CHIR124 (Chk1 inhibitor) and YM155 (Survivin inhibitor)] (Figure 1B). Drugs not rescued by ECs (n=30) were considered positive hits and 5 of them (ruxolitinib, tofacitinib, panobinostat, bortezomib, irinotecan) ultimately proved to be effective in vivo in randomized pre-clinical trials either alone or in combination (Figure 1C). Our stepwise endothelial-leukemia platform led to the discovery of "public" and "private" vulnerabilities and the proof-of-principle of prediction-guided in vivo pre-clinical trials. We propose a list of compounds that could be readily translated into T-ALL clinical trials (Figure 1D). We finally proved the validity of our platform using other disease models (i.e. B and T-lymphoma PDTXs). Mechanistically, at single-cell resolution, in vitro interacting T-ALL cells and ECs underwent reciprocal transcriptome changes, with T-ALL shifting towards stemness/undifferentiation and ECs towards tumor-ECs (TECs) phenotypes. Furthermore, in vitro EC-educated T-ALL cells mimicked distinct T-ALL subsets of the leukemic spleen of corresponding PDTX mice (Figure 1E). Conclusions. These data demonstrate that our EC-T-ALL culture system simulates in vivo conditions, offering a robust platform to study drug response, leukemia-host interactions and cell plasticity. This approach will improve the pre-clinical predictability of novel drugs/combinations for T-ALL, as well as for other hematologic malignancies, and propel the development of patient-tailored treatments. Figure 1 Figure 1. Disclosures Melnick: Janssen Pharmaceuticals: Research Funding; Sanofi: Research Funding; Daiichi Sankyo: Research Funding; Epizyme: Consultancy; Constellation: Consultancy; KDAC Pharma: Membership on an entity's Board of Directors or advisory committees. Elemento: AstraZeneca: Research Funding; Freenome: Consultancy, Other: Current equity holder in a privately-held company; Volastra Therapeutics: Consultancy, Other: Current equity holder, Research Funding; Champions Oncology: Consultancy; Owkin: Consultancy, Other: Current equity holder; One Three Biotech: Consultancy, Other: Current equity holder; Eli Lilly: Research Funding; Johnson and Johnson: Research Funding; Janssen: Research Funding. Chiaretti: amgen: Consultancy; pfizer: Consultancy; novartis: Consultancy; Incyte: Consultancy. Cerchietti: Celgene: Research Funding; Bristol Myers Squibb: Research Funding.


1994 ◽  
Vol 71 (04) ◽  
pp. 499-506 ◽  
Author(s):  
Mark W C Hatton ◽  
Bonnie Ross-Ouellet

SummaryThe behavior of 125I-labeled recombinant hirudin towards the uninjured and de-endothelialized rabbit aorta wall has been studied in vitro and in vivo to determine its usefulness as an indicator of thrombin activity associated with the aorta wall. Thrombin adsorbed to either sulfopropyl-Sephadex or heparin-Sepharose bound >95% of 125I-r-hirudin and the complex remained bound to the matrix. Binding of 125I-r-hirudin to the exposed aorta subendothelium (intima-media) in vitro was increased substantially if the tissue was pre-treated with thrombin; the quantity of l25I-r-hirudin bound to the de-endothelialized intima-media (i.e. balloon-injured in vitro) correlated positively with the quantity of bound 131I-thrombin (p <0.01). Aortas balloon-injured in vivo were measured for thrombin release from, and binding of 125I-r-hirudin to, the de-endothelialized intimal surface in vitro; 125I-r-hirudin binding correlated with the amount of active thrombin released (p <0.001). Uptake of 125I-r-hirudin by the aorta wall in vivo was proportional to the uptake of 131I-fibrinogen (as an indicator of thrombin activity) before and after balloon injury. After 30 min in the circulation, specific 125I-r-hirudin binding to the uninjured and de-endo- thelialized (at 1.5 h after injury) aorta wall was equivalent to 3.4 (± 2.5) and 25.6 (±18.1) fmol of thrombin/cm2 of intima-media, respectively. Possibly, only hirudin-accessible, glycosaminoglycan-bound thrombin is measured in this way.


1974 ◽  
Vol 31 (03) ◽  
pp. 420-428 ◽  
Author(s):  
M Fainaru ◽  
S Eisenberg ◽  
N Manny ◽  
C Hershko

SummaryThe natural course of defibrination syndrome caused by Echis colorata venom (ECV) in five patients is reported. All patients developed afibrinogenemia within six hours after the bite. Concomitantly a depression in factor V was recorded. Factor VIII and thrombocyte count in blood were normal in most patients. In the light of the known effects of ECV on blood coagulation in vivo and in vitro it is concluded that the afibrinogenemia is due to intravascular clotting.Four patients had transient renal damage, manifested by oliguria, azotemia, albuminuria and cylindruria, ascribed to microthrombi in the renal glomeruli.After the bite, the natural course was benign, no major bleeding was observed, and all signs of coagulopathy reverted to normal within 7 days. Therefore we recommend no specific treatment for this condition. In the case of heavily bleeding patients, administration of antiserum against ECV and/or heparin should be considered.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document