Deciding Degree of Conservativeness in Initial Design Considering Risk of Future Redesign

2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Nathaniel B. Price ◽  
Nam-Ho Kim ◽  
Raphael T. Haftka ◽  
Mathieu Balesdent ◽  
Sébastien Defoort ◽  
...  

Early in the design process, there is often mixed epistemic model uncertainty and aleatory parameter uncertainty. Later in the design process, the results of high-fidelity simulations or experiments will reduce epistemic model uncertainty and may trigger a redesign process. Redesign is undesirable because it is associated with costs and delays; however, it is also an opportunity to correct a dangerous design or possibly improve design performance. In this study, we propose a margin-based design/redesign method where the design is optimized deterministically, but the margins are selected probabilistically. The final design is an epistemic random variable (i.e., it is unknown at the initial design stage) and the margins are optimized to control the epistemic uncertainty in the final design, design performance, and probability of failure. The method allows for the tradeoff between expected final design performance and probability of redesign while ensuring reliability with respect to mixed uncertainties. The method is demonstrated on a simple bar problem and then on an engine design problem. The examples are used to investigate the dilemma of whether to start with a higher margin and redesign if the test later in the design process reveals the design to be too conservative, or to start with a lower margin and redesign if the test reveals the design to be unsafe. In the examples in this study, it is found that this decision is related to the variance of the uncertainty in the high-fidelity model relative to the variance of the uncertainty in the low-fidelity model.

Author(s):  
Kunihiro Hamada ◽  
Mitsuru Kitamura ◽  
Souichi Yasui ◽  
Hiroshi Kawasaki

Author(s):  
Markus Mäck ◽  
Michael Hanss

Abstract The early design stage of mechanical structures is often characterized by unknown or only partially known boundary conditions and environmental influences. Particularly, in the case of safety-relevant components, such as the crumple zone structure of a car, those uncertainties must be appropriately quantified and accounted for in the design process. For this purpose, possibility theory provides a suitable tool for the modeling of incomplete information and uncertainty propagation. However, the numerical propagation of uncertainty described by possibility theory is accompanied by high computational costs. The necessarily repeated model evaluations render the uncertainty analysis challenging to be realized if a model is complex and of large scale. Oftentimes, simplified and idealized models are used for the uncertainty analysis to speed up the simulation while accepting a loss of accuracy. The proposed multifidelity scheme for possibilistic uncertainty analysis, instead, takes advantage of the low costs of an inaccurate low-fidelity model and the accuracy of an expensive high-fidelity model. For this purpose, the functional dependency between the high- and low-fidelity model is exploited and captured in a possibilistic way. This results in a significant speedup for the uncertainty analysis while ensuring accuracy by using only a low number of expensive high-fidelity model evaluations. The proposed approach is applied to an automotive car crash scenario in order to emphasize its versatility and applicability.


Author(s):  
Rong-Yuan Jou

A freezing chucker is a clamp-less mechanism of fixture for easy broken egg-shell, clay, and other ferrous/nonferrous materials. Typical structure of this mechanism includes a top plate for freezing workpieces, a body with specially designed channels for the coolant flows, and a bottom plate to fasten on the table of other machine. Just by a small amount of liquids on the top surface and by rapidly cool down to 253K, parts can be frozen stationary on the top plate surface and can conduct precision machining on it. There are four steps to design a new freeze chucker by the engineering design process: planning and clarifying the task; conceptual design; embodiment design; detailed design. Some useful tools from the Quality Function Deployment (QFD) technique and the Theory of Inventive Problem Solving (TRIZ) method are used in this design process. Eight concept designs are generated by the conceptual design work and the final design of channel with transverse ribs is selected by decision matrix technique during embodiment design and detailed design stage. This final design is evaluated by numerical modeling of the COMSOL MULTIPHYSICS 3.2 finite-element based package. Performances such as the temperature distribution of top-plate surface temperature and the lowest temperature of a freezing chucker are shown. Numerical results show the success of the innovative channel design by this inventive design process using TRIZ methodology.


2009 ◽  
Author(s):  
K Hamada ◽  
◽  
M Kitamura ◽  
S Yasui ◽  
H Kawasaki ◽  
...  

1994 ◽  
Vol 116 (3) ◽  
pp. 425-434 ◽  
Author(s):  
T. R. Camp ◽  
J. H. Horlock

An analysis is presented of the off-design performance of multistage axial-flow compressors. It is based on an analytical solution, valid for small perturbations in operating conditions from the design point, and provides an insight into the effects of choices made during the compressor design process on performance and off-design stage matching. It is shown that the mean design value of stage loading coefficient (ψ = Δh0/U2) has a dominant effect on off-design performance, whereas the stage-wise distribution of stage loading coefficient and the design value of flow coefficient have little influence. The powerful effects of variable stator vanes on stage-matching are also demonstrated and these results are shown to agree well with previous work. The slope of the working line of a gas turbine engine, overlaid on overall compressor characteristics, is shown to have a strong effect on the off-design stage-matching through the compressor. The model is also used to analyze design changes to the compressor geometry and to show how errors in estimates of annulus blockage, decided during the design process, have less effect on compressor performance than has previously been thought.


Author(s):  
T. R. Camp ◽  
J. H. Horlock

An analysis is presented of the off-design performance of multistage axial-flow compressors. It is based on an analytical solution, valid for small perturbations in operating conditions from the design point, and provides an insight into the effects of choices made during the compressor design process on performance and off-design stage matching. It is shown that the mean design value of stage loading coefficient (ψ = Δho/U2) has a dominant effect on off-design performance, whereas the stage-wise distribution of stage loading coefficient and the design value of flow coefficient have little influence. The powerful effects of variable stator vanes on stage-matching are also demonstrated and these results are shown to agree well with previous work. The slope of the working line of a gas turbine engine, overlaid on overall compressor characteristics, is shown to have a strong effect on the off-design stage-matching through the compressor. The model is also used to analyse design changes to the compressor geometry and to show how errors in estimates of annulus blockage, decided during the design process, have less effect of compressor performance than has previously been thought.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Zhen Jiang ◽  
Shishi Chen ◽  
Daniel W. Apley ◽  
Wei Chen

Model uncertainty is a significant source of epistemic uncertainty that affects the prediction of a multidisciplinary system. In order to achieve a reliable design, it is critical to ensure that the disciplinary/subsystem simulation models are trustworthy, so that the aggregated uncertainty of system quantities of interest (QOIs) is acceptable. Reduction of model uncertainty can be achieved by gathering additional experiments and simulations data; however, resource allocation for multidisciplinary design optimization (MDO) and analysis remains a challenging task due to the complex structure of the system, which involves decision makings about where (sampling locations), what (disciplinary responses), and which type (simulations versus experiments) for allocating more resources. Instead of trying to concurrently make the above decisions, which would be generally intractable, we develop a novel approach in this paper to break the decision making into a sequential procedure. First, a multidisciplinary uncertainty analysis (MUA) is developed to identify the input settings with unacceptable amounts of uncertainty with respect to the system QOIs. Next, a multidisciplinary statistical sensitivity analysis (MSSA) is developed to investigate the relative contributions of (functional) disciplinary responses to the uncertainty of system QOIs. The input settings and critical responses to allocate resources are selected based on the results from MUA and MSSA, with the aid of a new correlation analysis derived from spatial-random-process (SRP) modeling concepts, ensuring the sparsity of the selected inputs. Finally, an enhanced preposterior analysis predicts the effectiveness of allocating experimental and/or computational resource to answer the question about which type of resource to allocate. The proposed method is applied to a benchmark electronic packaging problem to demonstrate how epistemic model uncertainty is gradually reduced via resource allocation for data gathering.


Author(s):  
Franc¸ois Christophe ◽  
Min Wang ◽  
Eric Coatane´a ◽  
Yong Zeng ◽  
Alain Bernard

The final outcome of a design process depends a lot on the initial conditions of this process. The initial design conditions can be viewed as the initial definition and representation of the design problem in the form of requirement model. Describing the requirements involves considering their elicitation and its transformation in a form that can be further used by engineering designers. These two phases of requirements, elicitation and representation, involve by nature linguistic description. Users, stakeholders or designers express themselves through natural language. Semantics considerations involve understanding aspects that comes down to word selection or connotation but also interpretation aspects of written terms used by communities or persons within particular circumstances and contexts. The present research work is constructed around a central hypothesis: Final design outcomes are strongly dependent on the initial design conditions because of the recursive nature of the design activity. The present article claims that computer tools can support the disambiguation process associated with elicitation and representation. For this reason the authors have developed an experimental process aiming at reducing ambiguity of the parts of the initial conditions of the design process that are expressed in natural language. This disambiguation is considering several levels: the grammar, words selection and context description.


Author(s):  
Cristian Iorga ◽  
Alain Desrochers

The expansion of the markets corroborated with product customization and short time to launch the product have led to new levels of competition among product development companies. To be successful in the globalization of the markets and to enable the evaluation and validation of products, companies have to develop methodologies focused on lifecycle analysis and reduction of product variation to obtain both quality and robustness of products. Keywords: Modeling, Evaluation, Validation, Design ProcessThis paper proposes a new design process methodology that unifies theoretical results of modeling stage and empirical findings obtained from the validation stage. The evaluations and validations of engineering design are very important and they have a high influence on product performances and their functionality, as well on the customer perceptions.Given that most companies maintain the confidentiality of their product development processes and that the existing literature does not provide more detailed aspects of this field, the proposed methodology will represent a technical and logistical support intended for students or engineers involved in academic as well as industrial projects.A generic methodology will be refined based on a new approach that will take into consideration the specification types (quantitative or qualitative), the design objectives and the product types: new/improved, structural/esthetic. Hence the new generic methodology will be composed of specific product validation algorithms taking into account the above considerations. At the end of this paper, the improvements provided by the proposed methodology into the design process will be shown in the context of the engineering student capstone projects at the Université de Sherbrooke.


2020 ◽  
Vol 57 (4) ◽  
pp. 191-197
Author(s):  
Dong-seon Shin ◽  
Byeong-cheol Park ◽  
Chae-og Lim ◽  
Sang-jin Oh ◽  
Gi-yong Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document