Design and Evaluation of a Portable Laparoscopic Training System Using Virtual Reality

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Zahiri ◽  
Ryan Booton ◽  
Ka-Chun Siu ◽  
Carl A. Nelson

The ubiquitous nature of laparoscopic surgery and the decreased training time available for surgeons are driving an increased need for effective training systems to help surgeons learn different procedures. A cost-effective and user-friendly simulator has been designed to imitate specific training tasks for laparoscopic surgery in virtual environments via image processing and computer vision. The capability of using various actual surgical instruments suited for these specific procedures gives heightened fidelity to the simulator. Image processing via matlab software provides real-time mapping of the graspers in the workspace to the virtual reality (VR) environment (vizard software). Two different tasks (peg transfer and needle passing) were designed to evaluate trainees and compare their performance with characteristics of expert surgeons. Pilot testing of the system was carried out with 11 subjects to validate the similarity of this device with an existing surgical box trainer. Task completion time and muscle activity have been used as metrics for evaluation. The decrease in completion time for all subjects suggests similarity of skills transfer for both simulators. In addition, the p-value of muscle activity showed no significant differences for most muscles in the peg transfer task when using either the VR or physical analog environment and no significant differences for about half of the muscles in the needle passing task. Based on the results, the new proposed VR simulator appears to be a viable alternative to help trainees gain laparoscopic skills.

2011 ◽  
Vol 9 (1) ◽  
pp. 1-6
Author(s):  
Michitaka Fujiwara ◽  
Masamichi Sakaguchi ◽  
Hiroki Hidaka ◽  
Takuya Watanabe ◽  
Yasuhiro Kodera ◽  
...  

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Jari Kangas ◽  
Sriram Kishore Kumar ◽  
Helena Mehtonen ◽  
Jorma Järnstedt ◽  
Roope Raisamo

Virtual reality devices are used for several application domains, such as medicine, entertainment, marketing and training. A handheld controller is the common interaction method for direct object manipulation in virtual reality environments. Using hands would be a straightforward way to directly manipulate objects in the virtual environment if hand-tracking technology were reliable enough. In recent comparison studies, hand-based systems compared unfavorably against the handheld controllers in task completion times and accuracy. In our controlled study, we compare these two interaction techniques with a new hybrid interaction technique which combines the controller tracking with hand gestures for a rigid object manipulation task. The results demonstrate that the hybrid interaction technique is the most preferred because it is intuitive, easy to use, fast, reliable and it provides haptic feedback resembling the real-world object grab. This suggests that there is a trade-off between naturalness, task accuracy and task completion time when using these direct manipulation interaction techniques, and participants prefer to use interaction techniques that provide a balance between these three factors.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 488
Author(s):  
Alex J. Watras ◽  
Jae-Jun Kim ◽  
Jianwei Ke ◽  
Hewei Liu ◽  
Jacob A. Greenberg ◽  
...  

Existing laparoscopic surgery systems use a single laparoscope to visualize the surgical area with a limited field of view (FoV), necessitating maneuvering the laparoscope to search a target region. In some cases, the laparoscope needs to be moved from one surgical port to another one to detect target organs. These maneuvers would cause longer surgical time and degrade the efficiency of operation. We hypothesize that if an array of cameras can be deployed to provide a stitched video with an expanded FoV and small blind spots, the time required to perform multiple tasks at different sites can be significantly reduced. We developed a micro-camera array that can enlarge the FoV and reduce blind spots between the cameras by optimizing the angle of cameras. The video stream of this micro-camera array was designed to be processed in real-time to provide a stitched video with the expanded FoV. We mounted this micro-camera array to a Fundamentals of Laparoscopic Surgery (FLS) laparoscopic trainer box and designed an experiment to validate the hypothesis above. Surgeons, residents, and a medical student were recruited to perform a modified bean drop task, and the completion time was compared against that measured using a traditional single-camera laparoscope. It was observed that utilizing the micro-camera array, the completion time of the modified bean drop task was 203 ± 55 s while using the laparoscope, the completion time was 245 ± 114 s, with a p-value of 0.00097. It is also observed that the benefit of using an FoV-expanded camera array does not diminish for subjects who are more experienced. This test provides convincing evidence and validates the hypothesis that expanded FoV with small blind spots can reduce the operation time for laparoscopic surgical tasks.


2021 ◽  
Vol 48 (3) ◽  
pp. 302-312
Author(s):  
Boram Kim ◽  
Jeeheon Ryu ◽  
Seonmi Kim ◽  
Namki Choi

The purpose of this study was to develop prototype of virtual reality(VR) simulation with malocclusion models and evaluate its applicability. Task abilities, task completion time, and a satisfaction survey were compared between dentist trainees and dental students. Participants were instructed to observe virtual malocclusion models and then performed three tasks to diagnose the type of malocclusion, determine clinical findings and develop treatment plans. Their satisfaction with the simulation experience were evaluated using a questionnaire containing five questions. Task abilities of trainees related to clinical features and treatment plans were significantly higher than that of students(p < 0.01). In both groups, the task completion time for the second case was significantly reduced compared to that for the first case(p < 0.01). The satisfaction survey showed high scores and positive responses for this simulation in both groups. If the prototype of VR simulation is continuously advanced, it will be applicable for orthodontic education in pediatric dentistry.


Author(s):  
Steven C. Mallam ◽  
Jørgen Ernstsen ◽  
Salman Nazir

Virtual Reality Head Mounted Displays (VR HMDs) offer highly immersive experiences that may alter users’ awareness and perception of the “real-world”. This paper investigates users’ perception of short duration (<5 minutes) time periods during simulated scenarios between two different simulation mediums. Fifty participants (Age: M=29.2 years; SD=10.7 years; 15 Females; 35 Males) were randomly assigned to one of two groups: (i) VR HMD or (ii) desktop computer configuration, where they performed identical searching tasks within a virtual environment three consecutive times. After each virtual session participants were asked to verbally report their perception of time duration. Results reveal that participants across both groups overestimated time duration in virtual environments by an average of 20.3%. As participants gained experience performing the task repeatedly across three consecutive attempts, their task completion time reduced (i.e. learning effect). However, participants’ accuracy of time perception continued to be consistently overestimated across both conditions.


Author(s):  
M de Lotbiniere-Bassett ◽  
S Choi ◽  
S Lama ◽  
GR Sutherland ◽  
H Hoshyarman

Background: For robot-assisted telesurgery, the workstation, in particular the haptic handcontroller itself a robot, is paramount to the performance of surgery. Based on the requirements for microsurgery, a novel haptic handcontroller Excalibur has been developed. Methods: Thirty-two surgeons performed a peg-in-hole task (simulating micromanipulation) with Excalibur and two commercially available handcontrollers (Sigma 7 and PHANToM Premium 3.0). A modified Kuka endeffector with bipolar forceps, and Leica microscope completed the remote robotic site. Comparisons were made based on training time, task completion time and number of errors. All participants completed a questionnaire. Results: Repeated measures ANOVA demonstrated significance for task completion time (p=0.004), training time (p=0.021) and number of errors (p=0.004). Surgeons were faster with Excalibur (72s) than with Sigma (96s,p=0.005) and PHANToM (96s,p=0.036). Training time was shorter with Excalibur than with PHANToM (210s vs 310s,p=0.013), and users made fewer errors (0.7 vs 2.1,p=0.008). Training time required for Sigma (285s) and the number of errors (1.3) were not significant. The surgeons found Excalibur smoother, more comfortable, less tiring and easier to maneuver, with more realistic force feedback and superior movement fidelity. Conclusions: Surgical performance was superior with Excalibur compared to the other handcontrollers. This may reflect the microsurgical requirements and unique design architecture of Excalibur.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yang Han

This paper aims to explore the influence of virtual reality technology interactive rehabilitation training system and PT and OT operation therapy on the exercise function, daily life activity ability (ADL), and the quality of life in patients with a sports injury. In this context, this paper mainly designed three experiments to test the virtual rehabilitation system: two action experiments (experiment 1), two experiments with actions in 3 different positions (experiment 2), and five different actions (experiment 3), and the motion intention recognition rate, average total time, and task completion degree of the three experiments were calculated. The virtual scene and hardware equipment were kept stable, and the human-machine interaction effect was good. The effectiveness of the proposed virtual reality rehabilitation training system is demonstrated from other aspects. The results showed that the average completion time of 5 volunteers was 57.72 seconds, with an average offline accuracy of 89.03%. In experiment 2, the five volunteers averaged 54.98 seconds, with an average offline accuracy of 91.73%. The average recognition accuracy of the training system reached 90%, demonstrating the effectiveness of the virtual reality rehabilitation training system in terms of motor intention recognition rate, average total use time, and task completion.


Sign in / Sign up

Export Citation Format

Share Document