scholarly journals Characterization of Particle Flow in a Free-Falling Solar Particle Receiver

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Clifford K. Ho ◽  
Joshua M. Christian ◽  
David Romano ◽  
Julius Yellowhair ◽  
Nathan Siegel ◽  
...  

Falling particle receivers are being evaluated as an alternative to conventional fluid-based solar receivers to enable higher temperatures and higher efficiency power cycles with direct storage for concentrating solar power (CSP) applications. This paper presents studies of the particle mass flow rate, velocity, particle-curtain opacity and density, and other characteristics of free-falling ceramic particles as a function of different discharge slot apertures. The methods to characterize the particle flow are described, and results are compared to theoretical and numerical models for unheated conditions. Results showed that the particle velocities within the first 2 m of release closely match predictions of free-falling particles without drag due to the significant amount of air entrained within the particle curtain, which reduced drag. The measured particle-curtain thickness (∼2 cm) was greater than numerical simulations, likely due to additional convective air currents or particle–particle interactions neglected in the model. The measured and predicted particle volume fraction in the curtain decreased rapidly from a theoretical value of 60% at the release point to less than 10% within 0.5 m of drop distance. Measured particle-curtain opacities (0.5–1) using a new photographic method that can capture the entire particle curtain were shown to match well with discrete measurements from a conventional lux meter.

2021 ◽  
Author(s):  
Hussein Zbib

A coupled computational fluid dynamics (CFD) and discrete element method (DEM) model was developed to analyze the fluid-particle and particle-particle interactions in a 3D liquid-solid fluidized bed (LSFB). The CFD-DEM model was validated using the Electrical Resistance Tomography (ERT) experimental method. ERT was employed to measure the bed-averaged particle volume fraction (BPVF) of 0.002 m glass beads fluidized with water for various particle numbers and flow rates. It was found that simulations employing the combination of the Gidaspow drag model with pressure gradient and virtual mass forces provided the least percentage error between experiments and simulations. It was also found that contact parameters must be calibrated to account for the particles being wet. The difference between simulations and experiments was 4.74%. The CFD-DEM model was also employed alongside stability analysis to investigate the hydrodynamic behavior within the LSFB and the intermediate flow regime for all cases studied.


Author(s):  
Clifford K. Ho ◽  
Joshua M. Christian ◽  
David Romano ◽  
Julius Yellowhair ◽  
Nathan Siegel

Falling particle receivers are being evaluated as an alternative to conventional fluid-based solar receivers to enable higher temperatures and higher efficiency power cycles with direct storage for concentrating solar power applications. This paper presents studies of the particle mass flow rate, velocity, particle-curtain opacity and density, and other characteristics of free-falling ceramic particles as a function of different discharge slot apertures. The methods to characterize the particle flow are described, and results are compared to theoretical and numerical models for unheated conditions.


Author(s):  
Dang Minh Triet ◽  
Truong Quoc Tuan ◽  
Tran Van Thien

Gels are dilute connected networks that form solids at very low particle volume fraction with rich rheological properties. The kinetic process of gelation is central to understand the flow of complex fluids. Here, we report a simulation study of colloidal gelation formed by anisotropic colloids with attractive Lennard-Jones potential. These forces quasi-model the critical Casimir effect far from the critical solvent fluctuations acting on colloidal patches. By tuning the depths of the patch-to-patch particle interactions and the selected colloidal patches, we dynamically arrest the colloids to form gels. We find that thermal density fluctuation is the key factor to activate colloidal cluster space spanning: the balance between clustering and break-up mechanism plays a major role in the gelation process of anisotropic systems. These results offer new opportunities for studying the structural modifications of colloidal gels formed by anisotropic particles, and shed light on non-equilibrium behavior of anisotropic colloidal building blocks.


2021 ◽  
Author(s):  
Hussein Zbib

A coupled computational fluid dynamics (CFD) and discrete element method (DEM) model was developed to analyze the fluid-particle and particle-particle interactions in a 3D liquid-solid fluidized bed (LSFB). The CFD-DEM model was validated using the Electrical Resistance Tomography (ERT) experimental method. ERT was employed to measure the bed-averaged particle volume fraction (BPVF) of 0.002 m glass beads fluidized with water for various particle numbers and flow rates. It was found that simulations employing the combination of the Gidaspow drag model with pressure gradient and virtual mass forces provided the least percentage error between experiments and simulations. It was also found that contact parameters must be calibrated to account for the particles being wet. The difference between simulations and experiments was 4.74%. The CFD-DEM model was also employed alongside stability analysis to investigate the hydrodynamic behavior within the LSFB and the intermediate flow regime for all cases studied.


Author(s):  
Apurv Kumar ◽  
Jin-Soo Kim ◽  
Wojciech Lipiński

Radiation absorption by a particle curtain formed in a solar free falling particle receiver is investigated using a Eulerian-Eulerian granular two-phase model to solve the two-dimensional mass and momentum equations (CFD). The radiative transfer equation is subsequently solved by the Monte-Carlo (MC) ray-tracing technique using the CFD results to quantify the radiation intensity through the particle curtain. The CFD and MC results provide reliable opacity predictions and are validated with the experimental results available in literature. The particle curtain was found to absorb the solar radiation efficiently for smaller particles at high flowrates due to higher particle volume fraction and increased radiation extinction. However, at low mass-flowrates the absorption efficiency decreases for small and large particles.


2015 ◽  
Vol 19 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jahar Sarkar

The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction) are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.


2021 ◽  
Author(s):  
Yosephus Ardean Kurnianto Prayitno ◽  
Tong Zhao ◽  
Yoshiyuki Iso ◽  
Masahiro Takei

1999 ◽  
Author(s):  
J. W. Gao ◽  
S. J. White ◽  
C. Y. Wang

Abstract A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.


Sign in / Sign up

Export Citation Format

Share Document