Analysis of Two Spherical Parallel Manipulators With Hidden Revolute Joints

2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Ju Li ◽  
J. Michael McCarthy

In this paper, we examine two spherical parallel manipulators (SPMs) constructed with legs that include planar and spherical subchains that combine to impose constraints equivalent to hidden revolute joints. The first has supporting serial chain legs constructed from three revolute joints with parallel axes, denoted R∥R∥R, followed by two revolute joints that have intersecting axes, denoted RR̂. The leg has five degrees-of-freedom and is denoted R∥R∥R-RR̂. Three of these legs can be assembled so the spherical chains all share the same point of intersection to obtain a spherical parallel manipulator denoted as 3-R∥R∥R-RR̂. The second spherical parallel manipulator has legs constructed from three revolute joints that share one point of intersection, denoted RRR̂, and a second pair of revolute joints with axes that intersect in a different point. This five-degree-of-freedom leg is denoted RRR̂-RR̂. The spherical parallel manipulator constructed from these legs is 3-RRR̂-RR̂. We show that the internal constraints of these two types of legs combine to create hidden revolute joints that can be used to analyze the kinematics and singularities of these spherical parallel manipulators. A quaternion formulation provides equations for the quartic singularity varieties some of which decompose into pairs of quadric surfaces which we use to classify these spherical parallel manipulators.

1994 ◽  
Vol 116 (2) ◽  
pp. 587-593 ◽  
Author(s):  
C. M. Gosselin ◽  
J. Sefrioui ◽  
M. J. Richard

This paper presents a polynomial solution to the direct kinematic problem of a class of spherical three-degree-of-freedom parallel manipulators. This class is defined as the set of manipulators for which the axes of the three revolute joints attached to the gripper link are coplanar and symmetrically arranged. It is shown that, for these manipulators, the direct kinematic problem admits a maximum of 8 real solutions. A polynomial of degree 8 is obtained here to support this result and cases for which all the roots of the polynomial lead to real configurations are presented. Finally, the spherical parallel manipulator with collinear actuators, which received some attention in the literature, is also treated and is shown to lead to a minimal polynomial of the same degree. Examples of the application of the method to manipulators of each category are given and solved.


Author(s):  
Clément M. Gosselin ◽  
Jaouad Sefrioui ◽  
Marc J. Richard

Abstract This paper presents a polynomial solution to the direct kinematic problem of a class of spherical three-degree-of-freedom parallel manipulators. This class is defined as the set of manipulators for which the axes of the three revolute joints attached to the gripper link are coplanar and symmetrically arranged. It is shown that, for these manipulators, the direct kinematic problem admits a maximum of 8 real solutions. A polynomial of degree 8 is obtained here to support this result and cases for which all the roots of the polynomial lead to real configurations are presented. Finally, the spherical parallel manipulator with collinear actuators, which received some attention in the literature, is also treated and is shown to lead to a minimal polynomial of the same degree. Examples of the application of the method to manipulators of each category are given and solved.


Author(s):  
Ju Li ◽  
J. Michael McCarthy

In this paper, we study the manifold of configurations of a 3SPS-1S spherical parallel manipulator. This manifold is obtained as the intersection of quadrics in the hypersphere defined by quaternion coordinates and is called its constraint manifold. We then formulate Jacobian for this manipulator and consider its singular. This is a quartic algebraic manifold called the singularity variety of the parallel manipulator. A survey of the architectures that can be defined for the 3SPS-1S spherical parallel manipulators yield a number of special cases, in particular the architectures with coincident base or moving pivots yields singularity varieties that factor into two quadric surfaces.


2010 ◽  
Vol 3 (1) ◽  
Author(s):  
Man Bok Hong ◽  
Yong Je Choi

In this paper, the unique form of the screw based Jacobian is suggested for lower mobility parallel manipulators. Utilizing the concept of the reciprocal Jacobian, the forward statics relation for each of the serial kinematic chains of a parallel manipulator can be first obtained and then used to derive both the forward statics and the inverse velocity relations of the manipulator. The screw based Jacobian of a parallel manipulator can be formulated from the inverse velocity relation in such a way that it consists of the reciprocal Jacobians of the serial kinematic chains. Since any reciprocal Jacobian is unique to the corresponding serial chain, the suggested form of the screw based Jacobian is also determined uniquely to the lower mobility parallel manipulator. Two examples are given to illustrate the proposed method, one for the 3DOF parallel manipulator with three identical prismatic-revolute-spherical joints-serial chains and the other for the 4DOF parallel manipulator with nonidentical serial chains (two spherical-prismatic-spherical- and one revolute-revolute-prismatic-revolute joints-serial chains).


2018 ◽  
Vol 9 (1) ◽  
pp. 25-39 ◽  
Author(s):  
Alfonso Hernández ◽  
Erik Macho ◽  
Mónica Urízar ◽  
Víctor Petuya ◽  
Zhen Zhang

Abstract. The Pa2 pair is composed of two intertwined articulated parallelograms connecting in parallel two links of a kinematic chain. This pair has two translational degrees of freedom leading to a translational plane variable with the position. Currently, the Pa2 pair appears in conceptual designs presented in recent papers. However, its practical application is very limited. One of the reasons for this can be the high number of redundant constraints it has. But, it has to be considered that most of them can be eliminated by replacing wisely the revolute joints by spherical joints. On the other side, the structure of the Pa2 pair contributes to increase the global stiffness of the kinematic chain in which it is mounted. Also, its implementation is a promising alternative to the problematic passive prismatic joints. In this paper, the Pa2 pairs are used in the design of a 3 − P Pa2 parallel manipulator. The potentiality of this design is evaluated and proven after doing the following analyses: direct and inverse kinematics, singularity study, and workspace computation and assessment.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


2013 ◽  
Vol 325-326 ◽  
pp. 1014-1018
Author(s):  
Hai Rong Fang ◽  
Zhi Hong Chen ◽  
Yue Fa Fang

In this paper, a novel 3-degree-of-freedom (DOF) parallel manipulator that can perform three rotations around the remote centre is presented. The theory of screws and reciprocal screws is employed for the analysis of the geometric conditions. In particular, using circular guide to instead of R joints, so that has the advantage of enabling continuous 360° revolute around Z-axis. The inverse kinematics of mechanism is given and the workspace has a good performance. To compare with the machine constructed with traditional joints, it has the advantage of high rigidity and precision.


2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Gim Song Soh ◽  
J. Michael McCarthy

This paper presents a procedure that determines the dimensions of two constraining links to be added to a three degree-of-freedom spherical parallel manipulator so that it becomes a one degree-of-freedom spherical (8, 10) eight-bar linkage that guides its end-effector through five task poses. The dimensions of the spherical parallel manipulator are unconstrained, which provides the freedom to specify arbitrary base attachment points as well as the opportunity to shape the overall movement of the linkage. Inverse kinematics analysis of the spherical parallel manipulator provides a set of relative poses between all of the links, which are used to formulate the synthesis equations for spherical RR chains connecting any two of these links. The analysis of the resulting spherical eight-bar linkage verifies the movement of the system.


Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


Robotica ◽  
1999 ◽  
Vol 17 (5) ◽  
pp. 475-485 ◽  
Author(s):  
Zhen Huang ◽  
Y. Lawrence Yao

This paper presents a new method to analyze the closed-form kinematics of a generalized three-degree-of-a-freedom spherical parallel manipulator. Using this analytical method, concise and uniform solutions are achieved. Two special forms of the three-degree-of-freedom spherical parallel manipulator, i.e. right-angle type and a decoupled type, are also studied and their unique and interesting properties are investigated, followed by a numerical example.


Sign in / Sign up

Export Citation Format

Share Document