Analysis and Comparison of the Performance of an Inverted Brayton Cycle and Turbocompounding With Decoupled Turbine and Continuous Variable Transmission Driven Compressor for Small Automotive Engines

Author(s):  
P. Lu ◽  
C. Brace ◽  
B. Hu ◽  
C. Copeland

For an internal combustion engine, a large quantity of fuel energy (accounting for approximately 30% of the total combustion energy) is expelled through the exhaust without being converted into useful work. Various technologies including turbocompounding and the pressurized Brayton bottoming cycle have been developed to recover the exhaust heat and thus reduce the fuel consumption and CO2 emission. However, the application of these approaches in small automotive power plants has been relatively less explored because of the inherent difficulties, such as the detrimental backpressure and higher complexity imposed by the additional devices. Therefore, research has been conducted, in which modifications were made to the traditional arrangement aiming to minimize the weaknesses. The turbocharger of the baseline series turbocompounding was eliminated from the system so that the power turbine became the only heat recovery device on the exhaust side of the engine, and operated at a higher expansion ratio. The compressor was separated from the turbine shaft and mechanically connected to the engine via continuous variable transmission (CVT). According to the results, the backpressure of the novel system is significantly reduced comparing with the series turbocompounding model. The power output at lower engine speed was also promoted. For the pressurized Brayton bottoming cycle, rather than transferring the thermal energy from the exhaust to the working fluid, the exhaust gas was directly utilized as the working medium and was simply cooled by ambient coolant before the compressor. This arrangement, which is known as the inverted Brayton cycle (IBC) was simpler to implement. Besides, it allowed the exhaust gasses to be expanded below the ambient pressure. Thereby, the primary cycle was less compromised by the bottoming cycle. The potential of recovering energy from the exhaust was increased as well. This paper analyzed and optimized the parameters (including CVT ratio, turbine and compressor speed and the inlet pressure to the bottoming cycle) that are sensitive to the performance of the small vehicle engine equipped with inverted Brayton cycle and novel turbocompounding system, respectively. The performance evaluation was given in terms of brake power output and specific fuel consumption. Two working conditions, full and partial load (10 and 2 bar brake mean effective pressure (BMEP)) were investigated. Evaluation of the transient performance was also carried out. Simulated results of these two designs were compared with each other as well as the performance from the corresponding baseline models. The system models in this paper were built in GT-Power which is a one dimension (1D) engine simulation code. All the waste heat recovery systems were combined with a 2.0 L gasoline engine.

Author(s):  
P. Lu ◽  
C. Brace ◽  
B. Hu ◽  
C. Copeland

For an internal combustion engine, a large quantity of fuel energy (accounting for approximately 30% of the total combustion energy) is expelled through the exhaust without being converted into useful work. Various technologies including turbo-compounding and the pressurized Brayton bottoming cycle have been developed to recover the exhaust heat and thus reduce the fuel consumption and CO2 emission. However, the application of these approaches in small automotive power plants has been relatively less explored because of the inherent difficulties, such as the detrimental backpressure and higher complexity imposed by the additional devices. Therefore, research has been conducted, in which modifications were made to the traditional arrangement aiming to minimize the weaknesses. The turbocharger of the baseline series turbo-compounding was eliminated from the system so that the power turbine became the only heat recovery device on the exhaust side of the engine, and operated at a higher expansion ratio. The compressor was separated from the turbine shaft and mechanically connected to the engine via CVT. According to the results, the backpressure of the novel system is significantly reduced comparing with the series turbo-compounding model. The power output at lower engine speed was also promoted. For the pressurized Brayton bottoming cycle, rather than transferring the thermal energy from the exhaust to the working fluid, the exhaust gas was directly utilized as the working medium and was simply cooled by ambient coolant before the compressor. This arrangement, which is known as the inverted Brayton cycle was simpler to implement. Besides, it allowed the exhaust gasses to be expanded below the ambient pressure. Thereby, the primary cycle was less compromised by the bottoming cycle. The potential of recovering energy from the exhaust was increased as well. This paper analysed and optimized the parameters (including CVT ratio, turbine and compressor speed and the inlet pressure to the bottoming cycle) that are sensitive to the performance of the small vehicle engine equipped with inverted Brayton cycle and novel turbo-compounding system respectively. The performance evaluation was given in terms of brake power output and specific fuel consumption. Two working conditions, full and partial load (10 and 2 bar BMEP) were investigated. Evaluation of the transient performance was also carried out. Simulated results of these two designs were compared with each other as well as the performance from the corresponding baseline models. The system models in this paper were built in GT-Power which is a one dimension (1-D) engine simulation code. All the waste heat recovery systems were combined with a 2.0 litre gasoline engine.


Author(s):  
Yu-An Lin ◽  
Pao-An Chen ◽  
Kuei-Yuan Chan

Vehicular tailpipe emissions have one of the largest impacts on urban air quality. One way to reduce these hazardous emissions is to reduce the amount of fuel consumed by on-road vehicles. In this research, we consider both vehicle design and driver behavior as crucial elements in evaluating the environmental impact of two-wheel vehicles. Any redesign of vehicle specifications, results in different driving patterns that need to be re-evaluated in a realistic environment with traffic simulation. Therefore we developed traffic simulations with mixed fleets to model scooter/driver behaviors to reflect urban driving scenarios. Based on the results, a 31-variable continuous variable transmission (CVT) design and a 14-parameter cellular automata traffic model are integrated. Simultaneous redesign of CVT with traffic simulation can reduce the fuel consumption by 16.2% in our case study. This promising outcome demonstrates the need for multi-discipline integration of real-world traffic impact assessments and improvements.


Author(s):  
Akshay Khadse ◽  
Lauren Blanchette ◽  
Jayanta Kapat ◽  
Subith Vasu ◽  
Kareem Ahmed

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost and applicable to a broad range of heat source temperatures. The current study is focused on thermodynamic modelling and optimization of Recuperated (RC) and Recuperated Recompression (RRC) S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using a genetic algorithm. The Genetic Algorithm (GA) is mainly based on bio-inspired operators such as crossover, mutation and selection. This non-gradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio. It also outputs optimized mass flow rate of CO2 for the fixed mass flow rate and temperature of the exhaust gas. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. Further the optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for waste heat recovery.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


Author(s):  
Shashank Rai ◽  
Selin Arslan ◽  
Badih Jawad

Strict regulations are set up in various parts of the world with respect to vehicular emissions by their respective government bodies forcing automakers to design fuel-efficient vehicles. Fuel economy and carbon emission are the main factors affecting these regulations. In this competitive industry to make fuel efficient vehicles and reduce Green House Gas (GHG) emissions in internal combustions has led to various developments. Exhaust Heat Recovery System (EHRS) plays a vital role in improving powertrain efficiency. In this system, heat rejected by the engine is reused to heat the vehicle fluids faster (like engine coolant, engine oil, etc) also reducing harmful gases emitted. In internal combustion engines, generally only 25% of the fuel energy is converted into useful power output and approximately 40% of it is lost in exhaust heat. Certain studies show that by using the EHRS, the power output can be increased to 40% and the heat loss can be reduced to as much as 25%. The purpose of this study is to make use of this lost energy and convert most of it into useful energy. The thermodynamic properties and fuel consumed during the warmup period were analyzed to measure the improvement in the engine efficiency. The design was implemented on a Briggs and Stratton Junior 206cc engine. This system includes the use of heat exchangers. The main goal of this study is to develop a robust EHRS design and compare it with the baseline engine configuration to see the thermal and fuel economy improvement.


Author(s):  
Guang Xia ◽  
Huayu Zong ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Baoqun Sun

Given the transmission efficiency fluctuation and response lag problem of hydromechanical continuous variable transmission combined with the complex and variable working environment of a tractor, an integrated control strategy of engine throttle compensation–hydromechanical continuous variable transmission speed regulation is adopted for dual-flow transmission control. On the basis of the estimation of working resistance, a fuzzy algorithm is used to design the throttle compensation law. Considering the maximum driving power of a tractor as the target of variable speed control, an hydromechanical continuous variable transmission efficiency model is established, and the control law of an hydromechanical continuous variable transmission displacement ratio with the maximum driving power of the tractor under any working condition is determined. On the basis of the wavelet neural network proportional–integral–derivative algorithm, the control law of the hydromechanical continuous variable transmission speed regulation is designed, and the parameters of proportional–integral–derivative control are corrected in real time during the control process. Based on MATLAB/Simulink modelling and simulation and the real vehicle verification test, results showed that the influence of hydromechanical continuous variable transmission efficiency fluctuation on the driving power of the entire vehicle, the response lag of the pump-controlled motor system, and the effect of the leakage on the variable speed control and the fluctuation of the working resistance are solved by studying the hydromechanical continuous variable transmission variable speed transmission control strategy. This strategy improves the stability of the tractor speed and ensured the quality of the work, thereby improving the ability of the tractor to adapt to complex working environments.


Energy ◽  
2014 ◽  
Vol 67 ◽  
pp. 623-630 ◽  
Author(s):  
Shahaboddin Shamshirband ◽  
Dalibor Petković ◽  
Amineh Amini ◽  
Nor Badrul Anuar ◽  
Vlastimir Nikolić ◽  
...  

Author(s):  
Yuan Mao Huang ◽  
Bi Shyang Hu

Abstract Many design parameters affect the performance of continuous variable transmissions. This paper presents the optimization of a continuous variable transmission by using the simulated annealing algorithm. The Bessel method of curve fitting and the tensor product method of surface fitting were used to facilitate the discrete fuel consumption, emissions of carbon monoxide (CO) and HC compound of experimental engine data. A compromise method was used to analyze the multi-objective functions. The values for design variables are recommended for further development.


Sign in / Sign up

Export Citation Format

Share Document