scholarly journals Numerical prediction of heat transfer phenomena from a chip assembly for low Reynolds number

2011 ◽  
Vol 15 (2) ◽  
pp. 379-388
Author(s):  
Srinivas Bhatta ◽  
Seetharam Ramarao ◽  
Kankanhalli Seetharamuω

A three dimensional study of heat transfer from three heated blocks in a square channel at a Reynolds number of 108 with height of the chip assembly as the characteristic length is presented. Heated blocks affixed to the bottom plate represent electronic chips mounted on horizontal circuit board. A hexahedron block is affixed on to the top shrouding wall over the heated section. Thickness of this block is varied to study the effect on heat transfer from the chip assembly. A block of thickness equal to the passage between substrates produces maximum heat transfer enhancement. A block over the first passage enhances heat transfer from both immediate upstream and downstream chips considerably. A block over each recirculation zone produces moderate heat transfer from all the chips for a moderate pressure-drop. It is also observed that addition of blocks in the top plate does not add much to the pressure-drop in the duct.

Author(s):  
Yang Li ◽  
Hongwu Deng ◽  
Guoqiang Xu ◽  
Shuqing Tian

Rotation effects on heat transfer and pressure drop in a rotating two-pass square channel with ribs is experimentally investigated. The cooper plate heating technique is applied to obtain the regional average heat transfer coefficients. The Reynolds number and rotation number varies from 10000 to 60000, and 0 to 2.0, respectively. Rib turbulators are placed on the leading and trailing walls of the channel at an angle of 90 deg or 45 deg to the flow direction. The rib pitch-to-height (P/e) ratio is 10 and the height-to-hydraulic diameter (e/Dh) ratio is 0.1 for all tests. The detailed comparisons between smooth wall case and ribbed wall cases are presented. At stationary, increasing the Reynolds number decreases heat transfer and thermal performance ratios, but raises the friction factor ratios dramatically. Rotation shows the strongest effect on heat transfer in smooth case, and then 90 deg rib case, and the least in 45 deg rib case. Channel friction in smooth case is increased by rotation monotonously, but decreases with Ro in ribbed case when Ro increases up to 0.5. The similar thermal performances trends are observed for smooth and ribbed cases at rotation but with different peak point. The 45 deg rib channel has the superior thermal performance because it incurs the highest heat transfer and moderate pressure penalty.


2021 ◽  
Vol 40 (1) ◽  
pp. 286-299
Author(s):  
Behzad Ghobadi ◽  
Farshad Kowsary ◽  
Farzad Veysi

Abstract In this article, the numerical analysis has been carried out to optimize heat transfer and pressure drop in the horizontal channel in the presence of a rectangular baffle and constant temperature in two-dimension. For this aim, the governing differential equation has been solved by computational fluid dynamics software. The Reynolds numbers are in the range of 2,000 < Re < 10,000 and the working fluid is water. While the periodic boundary condition has been applied at the inlet, outlet, and the channel wall, axisymmetric boundary condition has been used for channel axis. For modeling and optimizing the turbulence, k–ω SST model and genetic algorithm have been applied, respectively. The results illustrate that adding a rectangular baffle to the channel enhances heat transfer and pressure drop. Hence, the heat transfer performance factor along with maximum heat transfer and minimum pressure drop has been investigated and the effective geometrical parameters have been introduced. As can be seen, there is an inverse relationship between baffle step and both heat transfer and pressure drop so that for p/d equal to 0.5, 1, and 1.25, the percentage of increase in Nusselt number is 141, 124, and 120% comparing to a simple channel and the increase in friction factor is 5.5, 5, and 4.25 times, respectively. The results of modeling confirm the increase in heat transfer performance and friction factor in the baffle with more height. For instance, when the Reynolds number and height are 5,000 and 3 mm, the Nusselt number and friction factor have been increased by 35% and 2.5 times, respectively. However, for baffle with 4 mm height, the increase in the Nusselt number and friction factor is 68% and 5.57 times, respectively. It is also demonstrated that by increasing Reynolds number, the maximum heat transfer performance has been decreased which is proportional to the increase in p/d and h/d. Moreover, the maximum heat transfer performance in 2,000 Reynolds number is 1.5 proportional to p/d of 0.61 and h/d of 0.36, while for 10,000 Reynolds number, its value is 1.19 in high p/d of 0.93 and h/d of 0.15. The approaches of the present study can be used for optimizing heat transfer performance where geometrical dimensions are not accessible or the rectangular baffle has been applied for heat transfer enhancement.


Author(s):  
Zhuo Yang ◽  
Tariq Amin Khan ◽  
Wei Li ◽  
Hua Zhu ◽  
Zhijian Sun ◽  
...  

The flow field inside the heat exchangers is associated with maximum heat transfer and minimum pressure drop. Designing a compact heat exchanger and employing various techniques to enhance its overall performance has been widely investigated and still an active research field. However, few researches deal with thermal optimization. The application of elliptic tube is an effective alternative to circular tube which can reduce the pressure drop significantly. In this study, numerical simulation and optimization of variable tube ellipticity is studied at low Reynolds numbers. The three-dimensional numerical analysis and a multi-objective genetic algorithm (MOGA) with surrogate modelling is performed. Two row tubes in staggered arrangement in fin-and-tube heat exchanger is investigated for combination of various elliptic ratio (e = minor axis/major axis) and Reynolds number. Tube elliptic ratio ranges from 0.2 to 1 and Reynolds number ranges from 150 to 750. The tube perimeters are kept constant while changing the elliptic ratio. The numerical model is derived based on continuum flow approach and steady-state conservation equations of mass, momentum and energy. The flow is assumed as incompressible and laminar due to low inlet velocity. Results are presented in the form of Colburn factor, friction factor, temperature contours and streamline contours. Results show that increasing elliptic ratio increases the friction factor due increased flow blocking area, however, the effect on the Colburn factor is not significant. Moreover, tube with lower elliptic ratio followed by higher elliptic ratio tube has better thermal-hydraulic performance. To achieve maximum heat transfer enhancement and minimum pressure drop, the Pareto optimal strategy is adopted for which the CFD results, Artificial neural network (ANN) and MOGA are combined. The tubes elliptic ratio (0.2 ⩽ e ⩽ 1.0) and Reynolds number (150 ⩽ Re ⩽ 750) are the design variables. The objective functions include Colburn factor (j) and friction factor (f). The CFD results are input into ANN model. Once the ANN is computed and its accuracy is checked, it is then used to estimate the model responses as a function of inputs. The final trained ANN is then used to drive the MOGA to obtain the Pareto optimal solution. The optimal values of these parameters are finally presented.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2069
Author(s):  
Eloy Hontoria ◽  
Alejandro López-Belchí ◽  
Nolberto Munier ◽  
Francisco Vera-García

This paper proposes a methodology aiming at determining the most influent working variables and geometrical parameters over the pressure drop and heat transfer during the condensation process of several refrigerant gases using heat exchangers with pipes mini channels technology. A multi-criteria decision making (MCDM) methodology was used; this MCDM includes a mathematical method called SIMUS (Sequential Interactive Modelling for Urban Systems) that was applied to the results of 2543 tests obtained by using a designed refrigeration rig in which five different refrigerants (R32, R134a, R290, R410A and R1234yf) and two different tube geometries were tested. This methodology allows us to reduce the computational cost compared to the use of neural networks or other model development systems. This research shows six variables out of 39 that better define simultaneously the minimum pressure drop, as well as the maximum heat transfer, saturation pressure fluid entering the condenser being the most important one. Another aim of this research was to highlight a new methodology based on operation research for their application to improve the heat transfer energy efficiency and reduce the CO2 footprint derived of the use of heat exchangers with minichannels.


2003 ◽  
Vol 2 (2) ◽  
pp. 65 ◽  
Author(s):  
R. S. Matos ◽  
T. A. Laursen ◽  
J. V. C. Vargas ◽  
A. Bejan

This work presents a three-dimensional (3-D) numerical and experimental geometric optimization study to maximize the total heat transfer rate between a bundle of finned tubes in a given volume and a given external flow both for circular and elliptic arrangements, for general staggered configurations. The optimization procedure started by recognizing the design limited space availability as a fixed volume constraint. The experimental results were obtained for circular and elliptic configurations with a fixed number of tubes (12), starting with an equilateral triangle configuration, which fitted uniformly into the fixed volume with a resulting maximum dimensionless tube-to-tube spacing S/2b = 1.5, where S is the actual spacing and b is the smaller ellipse semi-axis. Several experimental configurations were built by reducing the tube-to-tube spacings, identifying the optimal spacing for maximum heat transfer. Similarly, it was possible to investigate the existence of optima with respect to other two geometric degrees of freedom, i.e., tube eccentricity and fin-to-fin spacing. The results are reported for air as the external fluid in the laminar regime, for 125 and 100 Re 2b , where 2b is the ellipses smaller axis length. Circular and elliptic arrangements with the same flow obstruction cross-sectional area were compared on the basis of maximum total heat transfer. This criterion allows one to quantify the heat transfer gain in the most isolated way possible, by studying arrangements with equivalent total pressure drops independently of the tube cross section shape. This paper reports three-dimensional (3- D) numerical optimization results for finned circular and elliptic tubes arrangements, which are validated by direct comparison with experimental measurements with good agreement. Global optima with respect to tube-to-tube spacing, eccentricity and fin-tofin spacing ( 0.5 e 0.5, S/2b and 06 . 0 f for 125 and 100 Re 2b , respectively) were found and reported in general dimensionless variables. A relative heat transfer gain of up to 19% is observed in the optimal elliptic arrangement, as compared to the optimal circular one. The heat transfer gain, combined with the relative material mass reduction of up to 32% observed in the optimal elliptic arrangement in comparison to the circular one, show the elliptical arrangement has the potential for a considerably better overall performance and lower cost than the traditional circular geometry.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.


Author(s):  
Sunil Patil ◽  
Teddy Sedalor ◽  
Danesh Tafti ◽  
Srinath Ekkad ◽  
Yong Kim ◽  
...  

Modern dry low emissions (DLE) combustors are characterized by highly swirling and expanding flows that makes the convective heat load on the gas side difficult to predict and estimate. A coupled experimental–numerical study of swirling flow inside a DLE annular combustor model is used to determine the distribution of heat transfer on the liner walls. Three different Reynolds numbers are investigated in the range of 210,000–840,000 with a characteristic swirl number of 0.98. The maximum heat transfer coefficient enhancement ratio decreased from 6 to 3.6 as the flow Reynolds number increased from 210,000 to 840,000. This is attributed to a reduction in the normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.98 for the Reynolds number range investigated. The location of peak heat transfer did not change with the increase in Reynolds number since the flow structures in the combustors did not change with Reynolds number. Results also showed that the heat transfer distributions in the annulus have slightly different characteristics for the concave and convex walls. A modified swirl number accounting for the step expansion ratio is defined to facilitate comparison between the heat transfer characteristics in the annular combustor with previous work in a can combustor. A higher modified swirl number in the annular combustor resulted in higher heat transfer augmentation and a slower decay with Reynolds number.


Author(s):  
Tariq Amin Khan ◽  
Nasir Mehdi Gardezi ◽  
Wei Li ◽  
Yang Zhou ◽  
Zahid Ayub

Abstract The performance on the air side flow is often limited due to its lower heat transfer coefficient. This work is related to numerical simulation to study the significance of employing delta winglets in flat finned and wavy finned-tube heat exchangers. For this purpose, three-dimensional simulation data and a multi-objective genetic algorithm are employed. The angle of attack (α) of delta winglets and Reynolds number varied from 15° to 75° and 500 to 1300, respectively. Employing delta winglets has increased the heat transfer per unit temperature and per unit volume (Z) and the fan power per unit core volume (E) for both flat finned and wavy finned-tube heat exchangers. To achieve a maximum heat transfer enhancement and a minimum friction factor, the optimal values of these parameters (Re and α) are calculated using the Pareto optimal strategy. For this purpose, CFD data, a surrogate model (neural network) and a multi-objective optimization genetic algorithm are combined. Results show that the performance of wavy finned-tube heat exchangers is higher than flat-finned tube heat exchangers which signify the importance of delta winglets in the wavy finned-tube heat exchangers.


2012 ◽  
Vol 516-517 ◽  
pp. 249-252 ◽  
Author(s):  
Bing Chang Yang ◽  
Dong Xu Jin

Heat transfer enhancement by pulsating flow in a triangular grooved channel has been experimentally investigated. Effects of Reynolds number Re, Strouhal number St, pulsation amplitude A on the heat transfer enhancement were studied. The experimental results show that, the pulsating flow can significantly enhance heat transfer compared to the steady flow case, for instance, an enhancement of 115% is achieved at Re=400, A=0.5 and St=0.3. There exists an optimal Strouhal number corresponding to the maximum heat transfer enhancement factor. The heat transfer enhancement factor increases with the increase of Reynolds number and pulsation amplitude.


Sign in / Sign up

Export Citation Format

Share Document