scholarly journals Amplitude Induced Nonlinearity in Piston Mode Resonant Flow: A Fully Viscous Numerical Analysis

Author(s):  
Luca Bonfiglio ◽  
Stefano Brizzolara

Near field flow characteristics around catamarans close to resonant conditions involve violent viscous flow such as energetic vortex shedding and steep wave making. This paper presents a systematic and comprehensive numerical investigation of these phenomena at various oscillating frequencies and separation distances of twin sections. The numerical model is based on the solution of Navier–Stokes equations assuming laminar-flow conditions with a volume of fluid (VOF) approach which has proven to be particularly effective in predicting strongly nonlinear radiated waves which directly affect the magnitude of the hydrodynamic forces around resonant frequencies. Considered nonlinear effects include wave breaking, vortex shedding and wave-body wave-wave interactions. The method is first validated using available experiments on twin circular sections: the agreement in a very wide frequency range is improved over traditional linear potential flow based solutions. Particular attention is given to the prediction of added mass and damping coefficients at resonant conditions where linear potential flow methods fail, if empirical viscous corrections are not included. The results of the systematic investigation show for the first time how the so-called piston-mode motion characteristics are nonlinearly dependent on the gap width and motion amplitude. At low oscillation amplitudes, flow velocity reduces and so does the energy lost for viscous effects. On the other hand for higher oscillation amplitude, the internal free surface breaks dissipating energy hence reducing the piston mode amplitude. These effects cannot be numerically demonstrated without a computational technique able to capture free surface nonlinearity and viscous effects.

Author(s):  
Palaniswamy Ananthakrishnan

The hydrodynamics of a rectangular, floating twin hull under heave oscillation is analyzed to determine viscous and nonlinear effects on the radiation hydrodynamics of multi-hulls, in particular, at the resonant frequency corresponding to the piston (Helmholtz) mode of wave motions. A second-order finite-difference method based on boundary-fitted coordinates is used for the solution of the incompressible Navier-Stokes equations together with exact nonlinear viscous boundary conditions. To separate the viscosity effects from the nonlinear free-surface effects, through comparison of results, nonlinear inviscid results are also obtained using a boundary-fitted curvilinear coordinates based finite difference method. The nonlinear inviscid algorithm is based on the Eulerian-Lagrangian formulation of the nonlinear free-surface flow. The nonlinear results are compared with the linear potential-flow results obtained by Yeung and Seah [20] to quantify the combined nonlinear and viscous effects on the wave forces. The present results show the overall behavior of the wave motion to be similar to that predicted by the linear potential-flow theory [20]. Our results show that the effects of nonlinearity and viscosity on the wave motion can be significant for the Helmholtz mode, particularly for small separation distance between the hulls, which result in large vertical oscillation of the mean surface between the hulls. For small amplitudes of oscillation, the hydrodynamic pressure forces computed in the present analysis are in striking agreement with that given by the linear potential-flow analysis of Yeung and Seah [20].


Author(s):  
Senthuran Ravinthrakumar ◽  
Trygve Kristiansen ◽  
Babak Ommani

Moonpool resonance is investigated in a two-dimensional setting in terms of regular, forced heave motions of a model with moonpool with different rectangular-shaped recess configurations. A recess is a reduced draft zone in the moonpool. Dedicated experiments were carried out. The model consisted of two boxes of 40 cm width each, with a distance of 20 cm between them. Recess configurations varying between 5 cm to 10 cm in length and 5 cm in height were tested. Different drafts were also tested. The free-surface elevation inside the moonpool was measured at eight locations. A large number of forcing periods, and five forcing amplitudes were tested. A time-domain Boundary Element Method (BEM) code based on linear potential flow theory was implemented to investigate the resonance periods, mode shapes as well as the moonpool response as predicted by (linear) potential flow theory. Dominant physical effects were discussed, in particular damping due to flow separation from the sharp corners of the moonpool inlet and recess. The effect of the recess on the piston-mode behavior is discussed. BEM simulations where the effect of flow separation is empirically modelled were also conducted. The non-dimensional moonpool response suggests strong viscous damping at piston-mode resonance. The viscous BEM simulations demonstrate improvement over inviscid BEM, although further improvement of the method is needed. The piston mode shapes are clearly different from the near flat free-surface elevation for a moonpool without recess, consistent with recently published theory.


Author(s):  
C-E Janson

A potential-flow panel method is used to compute the waves and the lift force from surface-piercing and submerged bodies. In particular the interaction between the waves and the lift produced close to the free surface is studied. Both linear and non-linear free-surface boundary conditions are considered. The potential-flow method is of Rankine-source type using raised source panels on the free surface and a four-point upwind operator to compute the velocity derivatives and to enforce the radiation condition. The lift force is introduced as a dipole distribution on the lifting surfaces and on the trailing wake, together with a flow tangency condition at the trailing edge of the lifting surface. Different approximations for the spanwise circulation distribution at the free surface were tested for a surface-piercing wing and it was concluded that a double-model approximation should be used for low speeds while a single-model, which allows for a vortex at the free surface, was preferred at higher speeds. The lift force and waves from three surface-piercing wings, a hydrofoil and a sailing yacht were computed and compared with measurements and good agreement was obtained.


Author(s):  
Jaekyung Heo ◽  
Jong-Chun Park ◽  
Moo-Hyun Kim ◽  
Weon-Cheol Koo

In this paper, the potential and viscous flows are simulated numerically around a 2-D floating body with a moonpool (or a small gap) with particular emphasis on the piston mode. The floating body with moonpool is forced to heave in time domain. Linear potential code is known to give overestimated free-surface heights inside the moonpool. Therefore, a free-surface lid in the gap or similar treatments are widely employed to suppress the exaggerated phenomenon by potential theory. On the other hand, Navier-Stokes equation solvers based on a FVM can be used to take account of viscosity. Wave height and phase shift inside and outside the moon-pool are computed and compared with experimental results by Faltinsen et al. (2007) over various heaving frequencies. Pressure and vorticity fields are investigated to better understand the mechanism of the sway force induced by the heave motion. Furthermore, a nonlinear potential code is utilized to compare with the viscous flow. The viscosity effects are investigated in more detail by solving Euler equations. It is found that the viscous flow simulations agree very well with the experimental results without any numerical treatment.


2019 ◽  
Vol 84 (4) ◽  
pp. 696-711 ◽  
Author(s):  
Qianxi Wang ◽  
WenKe Liu ◽  
David M Leppinen ◽  
A D Walmsley

Abstract This paper is concerned with microbubble dynamics in a viscous compressible liquid near a rigid boundary. The compressible effects are modelled using the weakly compressible theory of Wang & Blake (2010, Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech., 730, 245–272), since the Mach number associated is small. The viscous effects are approximated using the viscous potential flow theory of Joseph & Wang (2004, The dissipation approximation and viscous potential flow. J. Fluid Mech., 505, 365–377), because the flow field is characterized as being an irrotational flow in the bulk volume but with a thin viscous boundary layer at the bubble surface. Consequently, the phenomenon is modelled using the boundary integral method, in which the compressible and viscous effects are incorporated into the model through including corresponding additional terms in the far field condition and the dynamic boundary condition at the bubble surface, respectively. The numerical results are shown in good agreement with the Keller–Miksis equation, experiments and computations based on the Navier–Stokes equations. The bubble oscillation, topological transform, jet development and penetration through the bubble and the energy of the bubble system are simulated and analysed in terms of the compressible and viscous effects.


Author(s):  
Irene Rivera-Arreba ◽  
Niek Bruinsma ◽  
Erin E. Bachynski ◽  
Axelle Viré ◽  
Bo T. Paulsen ◽  
...  

Floating offshore wind platforms may be subjected to severe sea states, which include both steep and long waves. The hydrodynamic models used in the offshore industry are typically based on potential-flow theory and/or Morison’s equation. These methods are computationally efficient and can be applied in global dynamic analysis considering wind loads and mooring system dynamics. However, they may not capture important nonlinearities in extreme situations. The present work compares a fully nonlinear numerical wave tank (NWT), based on the viscous Navier–Stokes equations, and a second-order potential-flow model for such situations. A comparison of the NWT performance with the experimental data is first completed for a moored vertical floating cylinder. The OC5-semisubmersible floating platform is then modeled numerically both in this nonlinear NWT and using a second-order potential-flow based solver. To test both models, they are subjected to nonsteep waves and the response in heave and pitch is compared with the experimental data. More extreme conditions are examined with both models. Their comparison shows that if the structure is excited at its heave natural frequency, the dependence of the response in heave on the wave height and the viscous effects cannot be captured by the adjusted potential-flow based model. However, closer to the inertia dominated region, the two models yield similar responses in pitch and heave.


Author(s):  
Kie Hian Chua ◽  
Rodney Eatock Taylor ◽  
Yoo Sang Choo

Safety of cargo transfer operations between side-by-side vessels depends on accurate modelling of hydrodynamic behavior, especially in terms of predicting the gap free surface elevations between the two vessels. The common industry practice of using linear potential flow models to study these interactions over-predicts the free surface elevations, due to the fact that potential flow does not include viscous dissipation effects such as flow separation at hull corners and skin friction. This may result in inaccurate projections of the time-window when these operations can safely take place. This is an important aspect for developments such as Floating Liquefied Natural Gas (FLNG) platforms, where side-by-side cargo offloading is an essential operation. In a recent research [1], an approach of splitting the amount of energy lost through viscous dissipation (calculated from three-dimensional viscous CFD simulations) into components representative of the flow phenomena has been proposed. Using the approach, referred to as component energy dissipation, the amount of energy lost due to vortex shedding and skin friction can be estimated. Modifications to linear potential flow were also proposed in the referenced research, such that the energy loss components can be converted into dissipative coefficients that are used in terms added to the free surface and body boundary conditions. By combining use of the component energy dissipation approach and the modified dissipative potential flow model, better predictions of gap hydrodynamic interaction can be obtained, compared to using conventional potential flow. In this paper, results from viscous simulations of two identical fixed-floating side-by-side barges of 280m (length) × 46m (breadth) × 16.5m (draught) under excitation from regular incident waves are presented, and compared with corresponding results from the modified dissipative potential flow model. Two types of side-by-side hull configurations were investigated, the first using rectangular barges with sharp bilge corners at varying gap distances and the second using barges with rounded bilge corners of varying radii at a fixed gap distance. Estimation of the dissipative coefficients used in the modified potential flow model, calculated from the viscous results, will also be discussed. The comparison of results serves both as a validation of the modified potential flow model, and to highlight the importance of including viscous dissipation when analyzing hydrodynamic interactions.


Author(s):  
Quan Zhou ◽  
Ming Liu ◽  
Heather Peng ◽  
Wei Qiu

There are challenges in the prediction of low-frequency load and especially the resonant free surface elevation between two bodies in close proximity. Most of the linear potential-flow based seakeeping programs currently used by the industry over-predict the free surface elevation between the vessels/bodies and hence the low-frequency loadings on the hulls. Various methods, such as the lid technique, have been developed to suppress the unrealistic values of low-frequency forces by introducing artificial damping coefficients. However, without the experimental data, it is challenging to specify the coefficients. This paper presents the experimental studies of motions of two bodies with various gaps and the wave elevations between bodies. Model tests were performed at the towing tank of Memorial University. The objective was to provide benchmark data for further numerical studies of the viscous effect on the free surface predictions. The experimental data were compared with numerical solutions based on potential flow methods. The effect of tank walls were examined. Preliminary uncertainty analysis was also carried out.


2009 ◽  
Vol 8 (1) ◽  
pp. 78
Author(s):  
P. R. F. Teixeira

A numerical simulation of the interaction between a regular wave and an immersed horizontal cylinder, whose axis is 3-radius deep, perpendicular to the direction of the wave propagation, is presented in this paper. The numerical model uses the semi-implicit two-step Taylor- Galerkin method to integrate Navier-Stokes equations in time and space. Arbitrary lagrangean-eulerian formulation is employed to describe the free surface movement. The free surface elevations near the cylinder and in some gauges along the channel, as well the spectrum distribution, are compared with experimental ones, and good agreement is obtained. The analysis shows that the viscous effects only affect the area that is very close to the cylinder.


2011 ◽  
Vol 688 ◽  
pp. 390-421
Author(s):  
J. C. Padrino ◽  
D. D. Joseph

AbstractThe nonlinear deformation and break-up of a bubble or drop immersed in a uniaxial extensional flow of an incompressible viscous fluid is analysed by means of viscous potential flow. In this approximation, the flow field is irrotational and viscosity enters through the balance of normal stresses at the interface. The governing equations are solved numerically to track the motion of the interface by coupling a boundary-element method with a time-integration routine. When break-up occurs, the break-up time computed here is compared with results obtained elsewhere from numerical simulations of the Navier–Stokes equations (Revuelta, Rodríguez-Rodríguez & Martínez-Bazán J. Fluid Mech., vol. 551, 2006, p. 175), which thus keeps vorticity in the analysis, for several combinations of the relevant dimensionless parameters of the problem. For the bubble, for Weber numbers $3\leqslant \mathit{We}\leqslant 6$, predictions from viscous potential flow shows good agreement with the results from the Navier–Stokes equations for the bubble break-up time, whereas for larger $\mathit{We}$, the former underpredicts the results given by the latter. When viscosity is included, larger break-up times are predicted with respect to the inviscid case for the same $\mathit{We}$. For the drop, and considering moderate Reynolds numbers, $\mathit{Re}$, increasing the viscous effects of the irrotational motion produces large, elongated drops that take longer to break up in comparison with results for inviscid fluids. For larger $\mathit{Re}$, it comes as a surprise that break-up times smaller than the inviscid limit are obtained. Unfortunately, results from numerical analyses of the incompressible, unsteady Navier–Stokes equations for the case of a drop have not been presented in the literature, to the best of the authors’ knowledge; hence, comparison with the viscous irrotational analysis is not possible.


Sign in / Sign up

Export Citation Format

Share Document