The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Xidong Du ◽  
Min Gu ◽  
Shuo Duan ◽  
Xuefu Xian

The effects of CO2 injection pressure (PCO2) on CO2 dispersion and the mechanism of CO2–CH4 displacement in a shale sampled from Changning of China were studied. Results indicated that Coats–Smith dispersion–capacitance model gave a reasonable simulated result to the breakthrough curves of CO2 under different injection pressures. The shapes of CO2 breakthrough curves became more asymmetrical with the increase of CO2 injection pressure. A higher CO2 injection pressure caused early CO2 breakthrough and reduced the recovery of CH4 at CO2 breakthrough (Rpipeline-CH4), but improved the ultimate displaced CH4 amount (Rultimate-CH4). With the increase of CO2 injection pressure, dispersion coefficient (Kd) increased nearly exponentially. A larger Kd led to a lower Rpipeline-CH4 and a longer transition zone. With the increase of CO2 injection pressure, the flowing fraction (F) in pore space decreased nearly linearly and more CO2 diffused into stagnant region to replace adsorbed CH4 in a shale, which resulted in a larger Rultimate-CH4. The mass transfer coefficient (Km) between the flowing and stagnant regions increased with the increase of CO2 injection pressure, which led to a smaller F and larger Rultimate-CH4. CO2 diffusion provided major contribution to CO2 dispersion at lower injection pressure, and mechanical mixing of CO2–CH4 offered predominant contribution to CO2 dispersion at higher injection pressure. Larger mechanical mixing accelerated the mixing of CO2–CH4, which was unfavorable for Rpipeline-CH4. Lower CO2 injection pressure was conductive to gain higher Rpipeline-CH4.

2009 ◽  
Vol 6 (2) ◽  
pp. 2415-2449 ◽  
Author(s):  
O. Silva ◽  
J. Carrera ◽  
S. Kumar ◽  
M. Dentz ◽  
A. Alcolea ◽  
...  

Abstract. Many flow and transport phenomena, ranging from delayed storage observed in pumping tests to tailing in river or aquifer tracer breakthrough curves, display non-equilibrium behavior. Usually, they are modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT), among others. We develop a MRMT algorithm that can be used to represent all these formulations. The method is accurate, computationally inexpensive and easy to implement in groundwater or river flow and transport codes. In fact, we present a module that can be linked to existing programs with minimal programming effort. Its accuracy is verified by comparison with existing solutions.


2017 ◽  
Vol 48 (1) ◽  
Author(s):  
Bahia & Naser

A laboratory experiment was carried out at the Department of Soil Sciences and Water Resources, College of Agriculture, University of Baghdad. Silty clay soil was treated with three salt solutions (NaCl, CaCl2 and mixed NaCl–CaCl2). Homogeneously packed soil columns (10 cm, 40 cm) were leached six times using tap water. Effluent samples were collected to determine ion concentration Cl-, Ca++, Na+, K+ and Mg++. Breakthrough curves were used to estimate solute transport parameters (retardation factor, peclet number) using an analytical solution of convection-dispersion equation (CDE) by CXTFIT program. The results showed that relative concentration of chloride was increased rapidly with calcium chloride, which increased sodium leaching rate at starting of breakthrough curve. Sodium chloride increased water requirements for calcium displacement. Results indicated a good fitting of convection-dispersion equation with breakthrough curves data. The best-fit were used to calculate peclet number, retardation factor and dispersion coefficient. When soil was treated with calcium chloride, Peclet number of chloride was increased from 3.13 to 6.48, while it has been decreased for calcium, sodium and potassium. Sodium chloride decreased peclet numbers of chloride, calcium and sodium. Also mixed salts increased sodium peclet number from 1.01 to 9.02. Results showed, calcium chloride decreased retardation factor of chloride from 1.59 to 0.50, while it has been increased from 1.39, 1.58 to 175.00, 493.36 for each of sodium and potassium, respectively. Retardation factor of calcium was decreased when soil was treated with sodium chloride or mixed salts. Dispersion coefficient was decreased for chloride, and increased for calcium and magnesium. When soil was treated with calcium chloride, dispersion coefficients have been increased from 24.29, 25.56 to 40.51, 40.89 cm2hr-1 for sodium and potassium, respectively.


2021 ◽  
Author(s):  
Pietro de Anna ◽  
Amir A. Pahlavan ◽  
Yutaka Yawata ◽  
Roman Stocker ◽  
Ruben Juanes

<div> <div> <div> <p>Natural soils are host to a high density and diversity of microorganisms, and even deep-earth porous rocks provide a habitat for active microbial communities. In these environ- ments, microbial transport by disordered flows is relevant for a broad range of natural and engineered processes, from biochemical cycling to remineralization and bioremediation. Yet, how bacteria are transported and distributed in the sub- surface as a result of the disordered flow and the associ- ated chemical gradients characteristic of porous media has remained poorly understood, in part because studies have so far focused on steady, macroscale chemical gradients. Here, we use a microfluidic model system that captures flow disorder and chemical gradients at the pore scale to quantify the transport and dispersion of the soil-dwelling bacterium Bacillus subtilis in porous media. We observe that chemotaxis strongly modulates the persistence of bacteria in low-flow regions of the pore space, resulting in a 100% increase in their dispersion coefficient. This effect stems directly from the strong pore-scale gradients created by flow disorder and demonstrates that the microscale interplay between bacterial behaviour and pore-scale disorder can impact the macroscale dynamics of biota in the subsurface.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Marco Dentz ◽  
Alexandre Puyguiraud ◽  
Philippe Gouze

<p>Transport of dissolved substances through porous media is determined by the complexity of the pore space and diffusive mass transfer within and between pores. The interplay of diffusive pore-scale mixing and spatial flow variability are key for the understanding of transport and reaction phenomena in porous media. We study the interplay of pore-scale mixing and network-scale advection through heterogeneous porous media, and its role for the evolution and asymptotic behavior of hydrodynamic dispersion. In a Lagrangian framework, we identify three fundamental mechanisms of pore-scale mixing that determine large scale particle motion: (i) The smoothing of intra-pore velocity contrasts, (ii) the increase of the tortuosity of particle paths, and (iii) the setting of a maximum time for particle transitions. Based on these mechanisms, we derive an upscaled approach that predicts anomalous and normal hydrodynamic dispersion based on the characteristic pore length, Eulerian velocity distribution and Péclet number. The theoretical developments are supported and validated by direct numerical flow and transport simulations in a three-dimensional digitized Berea sandstone sample obtained using X-Ray microtomography. Solute breakthrough curves, are characterized by an intermediate power-law behavior and exponential cut-off, which reflect pore-scale velocity variability and intra-pore solute mixing. Similarly, dispersion evolves from molecular diffusion at early times to asymptotic hydrodynamics dispersion via an intermediate superdiffusive regime. The theory captures the full evolution form anomalous to normal transport behavior at different Péclet numbers as well as the Péclet-dependence of asymptotic dispersion. It sheds light on hydrodynamic dispersion behaviors as a consequence of the interaction between pore-scale mixing and Eulerian flow variability. </p>


2021 ◽  
Author(s):  
Mahesh S. Picha ◽  
M. Azuan B. Abu Bakar ◽  
Parimal A. Patil ◽  
Faiz A. Abu Bakar ◽  
Debasis P. Das ◽  
...  

Abstract Oil & Gas Operators are focusing on zero carbon emission to comply with government's changing rules and regulations, which play an important role in the encouragement of carbon capture initiatives. This paper aims to give insights on the world's first offshore CCS project in carbonate reservoir, where wells will be drilled to inject CO2, and store produced CO2 from contaminated fields. To safeguard the storage containment, the integrity of all wells needs to be scrutinized. Development wells in the identified depleted gas field are more than 40 years old and were not designed with consideration of high CO2 concentration in the reservoir. In consequence, the possibility of well leakage due to accelerated corrosion channeling and cracks, along the wellbore cannot be ignored and require careful evaluation. Rigorous process has been adopted in assessing the feasibility for converting existing gas producers into CO2 injectors. The required defined basis of designs for gas producer and CO2 injection wells differs in a great extent and this governs the re-usability of wells for CO2 injection or necessity to be abandoned. Three (3) new CO2 injectors with fat to slim design approach, corrosion resistant alloy (CRA) material and CO2 resistant cement are designed in view to achieve lifecycle integrity. Optimum angle of 53 deg and maintaining the injection pressure of 50 bar at 90 MSCFD rate is required for the injection of supercritical CO2 for 20 years. During well execution, challenges such as anti-collision risk, total loss scenarios while drilling in Carbonate reservoir need to be addressed before execution. The completion design is also focusing on having minimal number of completion jewelries to reduce pressure differential and potential leak paths from tubing hangar down to the end of lower completion. The selection of downhole safety valve (TRSV) type is of high importance to accommodate CO2 phase attributes at different pressure/temperature. Fiber Optic is included for monitoring the migration of CO2 plume by acquiring seismic survey and for well integrity by analyzing DAS/DTS data.


2011 ◽  
Vol 32 (4) ◽  
pp. 367-377 ◽  
Author(s):  
Lenka Kuboňová ◽  
Lucie Obalová ◽  
Oldřich Vlach ◽  
Ivana Troppová ◽  
Jaroslav Kalousek

Modelling of NO adsorption in fixed bed on activated carbon Adsorption experiments of nitric oxide in nitrogen carrier gas were held on activated carbon in a fixed bed flow system. Breakthrough curves describing the dependence of exit concentrations of nitric oxide on time were matched with theoretical response curves calculated from the linear driving force model (LDF). The model assumes Langmuir adsorption isotherm for the description of non-linear equilibrium and overall mass transfer coefficient for mass transfer mechanism. Overall mass transfer coefficients were obtained by the method of least squares for fitting numerically modelled breakthrough curves with experimental breakthrough curves. It was found that LDF model fits all the breakthrough curves and it is a useful tool for modelling purposes.


Sign in / Sign up

Export Citation Format

Share Document