Heat Transfer Analysis for Three-Dimensional Stagnation-Point Flow of Water-Based Nanofluid Over an Exponentially Stretching Surface

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Fiaz Ur Rehman ◽  
Sohail Nadeem

The basic theme of this investigation is to analyze heat and mass transport for three-dimensional (3D) stagnation-point flow of nanofluid caused by an exponentially stretched surface when water is treated as base fluid. In this study, we invoked the boundary layer phenomena and suitable similarity transformation of exponential character; as a result, our 3D nonlinear equations of momentum and energy are transmuted into nonlinear and nonhomogeneous differential equations involving ordinary derivatives. Final equations are then puzzled out by applying homotopy analysis technique. Interesting outcomes of aggressing parameters involved in this study, and effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. Different aspects of skin friction coefficient as well as Nusselt number are calculated. It is worth mentioning that skin friction (as we go) along x and y-direction is maximal for Cu-water nanofluid and minimal for AL2O3-water nanofluid. Also, the resulting quantity of local Nusselt number came out maximum for Cu-water nanofluid whereas minimum for TiO2-water nanofluid.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Maria Imtiaz ◽  
Hira Nazar ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Abstract The focus of this paper is to study the effects of stagnation point flow and porous medium on ferrofluid flow over a variable thicked sheet. Heat transfer analysis is discussed by including thermal radiation. Suitable transformations are applied to convert partial differential equations to ordinary differential equations. Convergent results for series solutions are calculated. The impact of numerous parameters on velocity and temperature is displayed for series solutions. Graphical behavior for skin friction coefficient and Nusselt number is also analyzed. Numerical values of Nusselt number are tabulated depending upon various parameters


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 549
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

There has been significant interest in exploring a stagnation point flow due to its numerous potential uses in engineering applications such as cooling of nuclear reactors. Hence, this study proposed a numerical analysis on the unsteady magnetohydrodynamic (MHD) mixed convection at three-dimensional stagnation point flow in Al2O3–Cu/H2O hybrid nanofluid over a permeable sheet. The ordinary differential equations are accomplished by simplifying the governing partial differential equations through suitable similarity transformation. The numerical computation is established by the MATLAB system software using the bvp4c technique. The bvp4c procedure is excellent in providing more than one solution once sufficient predictions are visible. The influence of certain functioning parameters is inspected, and notable results exposed that the rate of heat transfer is exaggerated along with the skin friction coefficient while the suction/injection and magnetic parameters are intensified. The results also signified that the rise in the volume fraction of the nanoparticle and the decline of the unsteadiness parameter demonstrates a downward attribution towards the heat transfer performance and skin friction coefficient. Conclusively, the observations are confirmed to have multiple solutions, which eventually contribute to an investigation of the analysis of the solution stability, thereby justifying the viability of the first solution.


Author(s):  
Saeed Dinarvand ◽  
Reza Hosseini ◽  
Ioan Pop

Purpose – The purpose of this paper is to do a comprehensive study on the unsteady general three-dimensional stagnation-point flow and heat transfer of a nanofluid by Buongiorno’s model. Design/methodology/approach – In this study, the convective transport equations include the effects of Brownian motion and thermophoresis. By introducing new similarity transformations for velocity, temperature and nanoparticle volume fraction, the basic equations governing the flow, heat and mass transfer are reduced into highly non-linear ordinary differential equations. The resulting non-linear system has been solved both analytically and numerically. Findings – The analysis shows that velocity, temperature and nanoparticle concentration profiles in the respective boundary layers depend on five parameters, namely unsteadiness parameter A, Brownian motion parameter Nb, thermophoresis parameter Nt, Prandtl number Pr and Lewis number Le. It is found that the thermal boundary layer thickens with a rise in both of the Brownian motion and the thermophoresis effects. Therefore, similar to the earlier reported results, the Nusselt number decreases as the Brownian motion and thermophoresis effects become stronger. A correlation for the Nusselt number has been developed based on a regression analysis of the data. This correlation predicts the numerical results with a maximum error of 9 percent for a usual domain of the physical parameters. Originality/value – The stagnation point flow toward a wavy cylinder (with nodal and saddle stagnation points) that a little attention has been given to it up to now. The examination of unsteadiness effect on the general three-dimensional stagnation-point flow. The application of an interesting and global model (Boungiorno’s model) for the nanofluid that incorporates the effects of Brownian motion and thermophoresis. The study of the effects of Brownian motion and thermophoresis on the nanofluid flow, heat and mass transfer characteristics. The prediction of correlation for the Nusselt number based on a regression analysis of the data. General speaking, we can tell the problem with this geometry, characteristics, the applied model, and comprehensive results, was Not studied and analyzed in literature up to now.


Open Physics ◽  
2011 ◽  
Vol 9 (5) ◽  
Author(s):  
Roslinda Nazar ◽  
Mihaela Jaradat ◽  
Norihan Arifin ◽  
Ioan Pop

AbstractIn this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that solutions do not exist for larger shrinking rates and dual solutions exist when λ < −1.0.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
M. J. Uddin ◽  
W. A. Khan ◽  
A. I. Md. Ismail ◽  
O. Anwar Bég

The effects of anisotropic slip and thermal jump on the three-dimensional stagnation point flow of nanofluid containing microorganisms from a moving surface have been investigated numerically. Anisotropic slip takes place on geometrically striated surfaces and superhydrophobic strips. Zero mass flux of nanoparticles at the surface is applied to achieve practically applicable results. Using appropriate similarity transformations, the transport equations are reduced to a system of nonlinear ordinary differential equations with coupled boundary conditions. Numerical solutions are reported by means of very efficient numerical method provided by the symbolic code Maple. The influences of the emerging parameters on the dimensionless velocity, temperature, nanoparticle volumetric fraction, density of motile microorganism profiles, as well as the local skin friction coefficient, the local Nusselt number, and the local density of the motile microorganisms are displayed graphically and illustrated in detail. The computations demonstrate that the skin friction along the x-axis is enhanced with the velocity slip parameter along the y-axis. The converse response is observed for the dimensionless skin friction along the y-axis. The heat transfer rate is increased with greater velocity slip effects but depressed with the thermal slip parameter. The local Nusselt number is increased with Prandtl number and decreased with the thermophoresis parameter. The local density for motile microorganisms is enhanced with velocity slip parameters and depressed with the bioconvection Lewis number, thermophoresis, and Péclet number. Numerical results are validated where possible with published results and excellent correlation is achieved.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Syahira Mansur ◽  
Anuar Ishak ◽  
Ioan Pop

The three-dimensional flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated. Numerical results are obtained using bvp4c in MATLAB. The results show nonunique solutions for the shrinking case. The effects of the stretching/shrinking parameter, suction parameter, Brownian motion parameter, thermophoresis parameter, and Lewis number on the local skin friction coefficient and the local Nusselt number are studied. Suction increases the solution domain. Furthermore, as the sheet is shrunk in thex-direction, suction increases the skin friction coefficient in the same direction while decreasing the skin friction coefficient in they-direction. The local Nusselt number is consistently lower for higher values of thermophoresis parameter and Lewis number. On the other hand, the local Nusselt number increases as the Brownian motion parameter increases.


2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Nurfazila Rasli ◽  
Norshafira Ramli

In this research, the problem of magnetohydrodynamic flow and heat transfer over an exponentially stretching/shrinking sheet in ferrofluids is presented. The governing partial differential equations are transformed into nonlinear ordinary differential equations by applying suitable similarity transformations. These equations are then solved numerically using the shooting method for some pertinent parameters. For this research, the water-based ferrofluid is considered with three types of ferroparticles: magnetite, cobalt ferrite, and manganese-zinc ferrite. The numerical solutions on the skin friction coefficient, Nusselt number, velocity and temperature profiles influenced by the magnetic parameter, wall mass transfer parameter, stretching/shrinking parameter, and volume fraction of solid ferroparticle are graphically displayed and discussed in more details. The existences of dual solutions are noticeable for the stretching/shrinking case in a specific range of limit. For the first solution, an increasing number in magnetic and suction will also give an increment of skin friction coefficient and Nusselt number over stretching/shrinking sheet. For the skin friction coefficient only, it is showed a decreasing pattern after the intersection. Besides, the presence of ferroparticles in the fluids causes a high number of the fluid’s thermal conductivity and heat transfer rate.


2021 ◽  
Vol 50 (10) ◽  
pp. 3139-3152
Author(s):  
Rusya Iryanti Yahaya ◽  
Norihan Md Arifin ◽  
Roslinda Mohd. Nazar ◽  
Ioan Pop

To fill the existing literature gap, the numerical solutions for the oblique stagnation-point flow of Cu-Al2O3/H2O hybrid nanofluid past a shrinking surface are computed and analyzed. The computation, using similarity transformation and bvp4c solver, results in dual solutions. Stability analysis then shows that the first solution is stable with positive smallest eigenvalues. Besides that, the addition of Al2O3 nanoparticles into the Cu-H2O nanofluid is found to reduce the skin friction coefficient by 37.753% while enhances the local Nusselt number by 4.798%. The increase in the shrinking parameter reduces the velocity profile but increases the temperature profile of the hybrid nanofluid. Meanwhile, the increase in the free parameter related to the shear flow reduces the oblique flow skin friction.


2020 ◽  
Vol 26 ◽  
pp. 23-38
Author(s):  
Nasreen Bano ◽  
B.B. Singh ◽  
Shoeb R. Sayyed

The present literature analyzes the MHD stagnation-point flow of an incompressible fluidover an exponentially stretching/shrinking permeable cylinder in the presence of a transverse magnetic field, and suction/injection. The governing partial differential equations in cylindrical form aretransformed into coupled ordinary differential equations (ODEs) using suitable similarity transformations. These ODEs are solved using optimal homotopy analysis method (OHAM) via Mathematicasoftware BVPh 2.0 package. The effects of various governing parameters such as curvature parameter, magnetic parameter, wall transpiration parameter, velocity ratio parameter and Prandtl number onvelocity and temperature profiles have also been examined graphically.


Sign in / Sign up

Export Citation Format

Share Document