Synthesis and Characterization of Nanofluids Useful in Concentrated Solar Power Plants Produced by New Mixing Methodologies for Large-Scale Production

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Manila Chieruzzi ◽  
Adio Miliozzi ◽  
Tommaso Crescenzi ◽  
José M. Kenny ◽  
Luigi Torre

In this study, different nanofluids (NFs) were developed by mixing a molten salt mixture (60% NaNO3–40% KNO3) with 1.0 wt % of silica–alumina nanoparticles using different methods. These NFs can be used as thermal energy storage materials in concentrating solar plants with a reduction of storage material if the thermal properties of the base fluid are increased. New mixing procedures without sonication were introduced with the aim to avoid the sonication step and to allow the production of a greater amount of NF with a procedure potentially more suitable for large-scale productions. For this purpose, two mechanical mixers and a magnetic stirrer were used. Each NF was prepared in aqueous solution with a concentration of 100 g/l. The effect of different concentrations (300 g/l and 500 g/l) was also studied with the most effective mixer. Specific heat, melting temperature, and latent heat were measured by means of differential scanning calorimeter. Thermal conductivity and diffusivity in the solid state were also evaluated. The results show that the highest increase of the specific heat was obtained with 100 g/l both in solid (up to 31%) and in liquid phase (up to 14%) with the two mechanical mixers. The same NFs also showed higher amount of stored heat. An increase in thermal conductivity and diffusivity was also detected for high solution concentrations with a maximum of 25% and 47%, respectively. Scanning electron microscopy (SEM) and energy-dispersive X-ray analyses revealed that the grain size in the NFs is much smaller than in the salt mixture, especially for the NF showing the highest thermal properties increase, and a better nanoparticles distribution is achieved with the lowest concentration. NFs with enhanced thermal properties can be synthesized in a cost-effective form in high concentrated aqueous solutions by using mechanical mixers.

2019 ◽  
Vol 26 (4) ◽  
pp. 211-218
Author(s):  
Mateusz Sierakowski ◽  
Wojciech Godlewski ◽  
Roman Domański ◽  
Jakub Kapuściński ◽  
Tomasz Wiśniewski ◽  
...  

AbstractPhase change materials (PCMs) are widely used in numerous engineering fields because of their good heat storage properties and high latent heat of fusion. However, a big group of them has low thermal conductivity and diffusivity, which poses a problem when it comes to effective and relatively fast heat transfer and accumulation. Therefore, their use is limited to systems that do not need to be heated or cooled rapidly. That is why they are used as thermal energy storage systems in both large scale in power plants and smaller scale in residential facilities. Although, if PCMs are meant to play an important role in electronics cooling, heat dissipation, or temperature stabilization in places where the access to cooling water is limited, such as electric automotive industry or hybrid aviation, a number of modifications and improvements needs to be introduced. Investigation whether additional materials of better thermal properties will affect the thermal properties of PCM is therefore of a big interest. An example of such material is diamond powder, which is a popular additive used in abradants. Its thermal diffusivity and conductivity is significantly higher than for a pure PCM. The article presents the results of an analysis of the effect of diamond powder on thermal conductivity and diffusivity of phase change materials in the case of octadecane.


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3241
Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.


2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


Author(s):  
Yener Usul ◽  
Mustafa Özçatalbaş

Abstract Increasing demand for usage of electronics intensely in narrow enclosures necessitates accurate thermal analyses to be performed. Conduction based FEM (Finite Element Method) is a common and practical way to examine the thermal behavior of an electronic system. First step to perform a numerical analysis for any system is to set up the correct analysis model. In this paper, a method for obtaining the coefficient of thermal conductivity and specific heat capacity of a PCB which has generally a complex composite layup structure composed of conductive layers, and dielectric layers. In the study, above mentioned properties are obtained performing a simple nondestructive experiment and a numerical analysis. In the method, a small portion of PCB is sandwiched from one side at certain pressure by jaws. A couple of linear temperature profiles are applied to the jaws successively. Unknown values are tuned in the analysis model until the results of FEM analysis and experiment match. The values for the coefficient of thermal conductivity and specific heat capacity which the experiment and numerical analysis results match can be said to be the actual values. From this point on, the PCB whose thermal properties are determined can be analyzed numerically for any desired geometry and boundary condition.


Author(s):  
Majid S. al-Dosari ◽  
D. G. Walker

Yttrium Aluminum Garnet (YAG, Y3Al5O12) and its varieties have applications in thermographic phosphors, lasing mediums, and thermal barriers. In this work, thermal properties of crystalline YAG where aluminum atoms are substituted with gallium atoms (Y3(Al1−xGax)5O12) are explored with molecular dynamics simulations. For YAG at 300K, the simulations gave values close to experimental values for constant-pressure specific heat, thermal expansion, and bulk thermal conductivity. For various values of x, the simulations predicted no change in thermal expansion, an increase in specific heat, and a decrease in thermal conductivity for x = 50%. Furthermore, the simulations predicted a decrease in thermal conductivity with decreasing system size.


2005 ◽  
Author(s):  
Zhanrong Zhong ◽  
Xinwei Wang

In this work, thermal transport in nanocrystalline materials is studied using large-scale equilibrium molecular dynamics (MD) simulation. Nanocrystalline materials with different grain sizes are studied to explore how and to what extent the size of nanograins affects the thermal conductivity and specific heat. Substantial thermal conductivity reduction is observed and the reduction is stronger for nanocrystalline materials with smaller grains. On the other hand, the specific heat of nanocrystalline materials shows little change with the grain size. The simulation results are compared with the thermal transport in individual nanograins based on MD simulation. Further discussions are provided to explain the fundamental physics behind the observed thermal phenomena in this work.


Nanoscale ◽  
2018 ◽  
Vol 10 (32) ◽  
pp. 15402-15409 ◽  
Author(s):  
M. R. Rodríguez-Laguna ◽  
A. Castro-Alvarez ◽  
M. Sledzinska ◽  
J. Maire ◽  
F. Costanzo ◽  
...  

While the dispersion of nanomaterials is known to be effective in enhancing the thermal conductivity and specific heat capacity of fluids, the mechanisms behind this enhancement remain to be elucidated.


Author(s):  
Siti Shahirah Suhaili ◽  
Md Azree Othuman Mydin ◽  
Hanizam Awang

The addition of mesocarp fibre as a bio-composite material in foamed concrete can be well used in building components to provide energy efficiency in the buildings if the fibre could also offer excellent thermal properties to the foamed concrete. It has practical significance as making it a suitable material for building that can reduce heat gain through the envelope into the building thus improved the internal thermal comfort. Hence, the aim of the present study is to investigate the influence of different volume fractions of mesocarp fibre on thermal properties of foamed concrete. The mesocarp fibre was prepared with 10, 20, 30, 40, 50 and 60% by volume fraction and then incorporated into the 600, 1200 and 1800 kg/m3 density of foamed concrete with constant cement-sand ratio of 1:1.5 and water-cement ratio of 0.45. Hot disk thermal constant analyser was used to attain the thermal conductivity, thermal diffusivity and specific heat capacity of foamed concrete of various volume fractions and densities. From the experimental results, it had shown that addition of mesocarp fibre of 10-40% by volume fraction resulting in low thermal conductivity and specific heat capacity and high the thermal diffusivity of foamed concrete with 600 and 1800 kg/m3 density compared to the control mix while the optimum amount of mesocarp fibre only limit up to 30% by volume fraction for 1200 kg/m3 density compared to control mix. The results demonstrated a very high correlation between thermal conductivity, thermal diffusivity and specific heat capacity which R2 value more than 90%.


Sign in / Sign up

Export Citation Format

Share Document