Experimental Investigation of Jet Impingement Cooling With Carbon Dioxide at Supercritical Pressures

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Kai Chen ◽  
Rui-Na Xu ◽  
Pei-Xue Jiang

Jet impingement cooling is widely used in many industrial applications due to its high heat transfer capability and is an option for advanced high power density systems. Jet impingement cooling with supercritical pressure fluids could have much larger heat transfer rates combining with the large fluid specific heat near the pseudocritical point. However, the knowledge of its flow and heat transfer characteristics is limited. In this study, the flow and the local and average heat transfer characteristics of jet impingement cooling with supercritical pressure fluids were studied experimentally with carbon dioxide first. An integrated thermal sensor chip that provided heating and temperature measurements was manufactured using micro-electro-mechanical systems (MEMS) techniques with a low thermal conductivity substrate as the impingement cooled plate. The experiment system pressure was 7.85 MPa, which is higher than the critical pressure of carbon dioxide of 7.38 MPa. The mass flow rate ranged from 8.34 to 22.36 kg/h and the Reynolds number ranged from 19,000 to 68,000. The heat flux ranged from 0.02 to 0.22 MW/m2. The nozzle inlet temperature ranged from lower to higher than the pseudocritical temperature. Dramatic variations of the density at supercritical pressures near the heating chip were observed with increasing heat flux in the strong reflection and refraction of the backlight that disappeared at inlet temperatures higher than the pseudocritical temperature. The local heat transfer coefficient near the stagnation point increased with increasing heat flux while those far from the stagnation point increased to a maximum with increasing heat flux and then decreased due to the nonuniformity of jet impingement cooling. The heat transfer is higher at inlet temperatures lower than the pseudocritical temperature and the surface temperature is slightly higher than the pseudocritical temperature due to the dramatic changes in the fluid thermo-physical properties at supercritical pressures.

Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


2011 ◽  
Vol 148-149 ◽  
pp. 680-683
Author(s):  
Run Peng Sun ◽  
Wei Bing Zhu ◽  
Hong Chen ◽  
Chang Jiang Chen

Three-dimensional numerical study is conducted to investigate the heat transfer characteristics for the flow impingement cooling in the narrow passage based on cooling technology of turbine blade.The effects of the jet Reynolds number, impingement distance and initial cross-flow on heat transfer characteristic are investigated.Results show that when other parameters remain unchanged local heat transfer coefficient increases with increase of jet Reynolds number;overall heat transfer effect is reduced by initial cross-flow;there is an optimal distance to the best effect of heat transfer.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 79
Author(s):  
Kaigang Gong ◽  
Bingguo Zhu ◽  
Bin Peng ◽  
Jixiang He

In this work, the heat transfer characteristics of supercritical pressure CO2 in vertical heating tube with 10 mm inner diameter under high mass flux were investigated by using an SST k-ω turbulent model. The influences of inlet temperature, heat flux, mass flux, buoyancy and flow acceleration on the heat transfer of supercritical pressure CO2 were discussed. Our results show that the buoyancy and flow acceleration effect based on single phase fluid assumption fail to explain the current simulation results. Here, supercritical pseudo-boiling theory is introduced to deal with heat transfer of scCO2. ScCO2 is treated to have a heterogeneous structure consisting of vapor-like fluid and liquid-like fluid. A physical model of scCO2 heat transfer in vertical heating tube was established containing a gas-like layer near the wall and a liquid-like fluid layer. Detailed distribution of thermophysical properties and turbulence in radial direction show that scCO2 heat transfer is greatly affected by the thickness of gas-like film, thermal properties of gas-like film and turbulent kinetic energy in the near-wall region. Buoyancy parameters Bu < 10-5, Bu* < 5.6 × 10−7 and flow acceleration parameter Kv < 3 × 10−6 in this paper, which indicate that buoyancy effect and flow acceleration effect has no influence on heat transfer of scCO2 under high mass fluxes. This work successfully explains the heat transfer mechanism of supercritical fluid under high mass flux.


Author(s):  
Xinjun Wang ◽  
Rui Liu ◽  
Xiaowei Bai ◽  
Jinling Yao

A mathematical model used for studying jet impingement cooling characteristics is established, and the rationality of the calculation model and method is confirmed by the experimental data. The CFX software is used to numerically simulate the jet impingement cooling characteristics on a gas turbine blade. The effects of various parameters, such as the arrays of impinging nozzles, the jet Reynolds number, the jet-to-jet distance, the ratio of nozzle-to-surface spacing to jet diameter H/d, and the radius of curvature of the target surface, on the flow and heat transfer characteristics of a impingement cooling process are studied. The results indicate that the impingement jets can make complex vortex in the cooling channel, the flow boundary layer is extremely thin and highly turbulent. Underneath each impingement nozzle, there will appear a low temperature area and a peak of Nusselt number on the impingement target surface, the distribution of temperature and Nusselt number on the target surface are associated with arrangement of impingement nozzles. The average Nusselt number of the in-line arrangement nozzles is higher than that of the staggered arrangement ones. With the increasing of jet Reynolds number, the velocity impinging on the target surface and Nusselt number increase. However, heat transfer of impingement cooling on target surface is not sensitive to the jet nozzles distance; the velocity impinging on the target surface and Nusselt number decrease with the increasing of the H/d value. For the curved target surface cases, the average Nusselt number of the target surface and the effect of heat transfer decreased with the increasing of curvature radius R.


Author(s):  
Gurpreet Singh ◽  
Subhash Chander

An experimental investigation has been carried out to determine the effect of swirl intensity on heat transfer characteristics of swirling flame impinging on a flat surface. The swirl intensity was varied by using helical vane swirlers having angles of 15°, 30° and 60° (low, medium and high swirl). Qualitative flame structures were studied by taking direct photographs of impinging flames. Experiments were conducted for different helical vane swirlers at different dimensionless separation distances (H/d = 1–6) for fixed value of Reynolds number (Re = 5000) and equivalence ratio (ϕ = 1.0). A dip in heat flux was observed at stagnation point for all levels of swirl. Peak heat flux was observed slightly away from the stagnation point due to centrifugal effect. A comparison of stagnation point heat flux has been done for different swirl intensities and for fixed operating conditions. Most uniform heat flux distribution was obtained corresponds to 30° helical vane swirler (medium swirl) at all separation distances.


Sign in / Sign up

Export Citation Format

Share Document