Experimental Residual Stress and Geometric Imperfections on Pressure Hull Instability Analysis

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Paulo Rogério Franquetto ◽  
Miguel Mattar Neto

Residual stress produced by cold bending and welding processes contributes to the collapse pressure reduction of submarine hulls. Usually, the residual stress profiles used to quantify this reduction are obtained from analytical or numerical models. However, such models have limitations to take into account cold bending and welding in the same time. Hence, experimental analyses are necessary to better quantify the residual stress. Based on that, this paper presents residual stress experimental results obtained at six points on a pressure hull prototype using X-ray portable system. Based on these results, the residual stress profiles through the material thickness were estimated for each region on the frame by using a polynomial approximation. These profiles were introduced in a nonlinear finite element numerical model to study the collapse pressure reduction. Experimental results available on the literature were also used. Material and geometric nonlinearities were considered in the analysis. The results show that the residual stress reduces the collapse pressure as part of the frame web has stress level higher than the material yield. The preload introduced by the residual stress plays a less important role for the collapse pressure reduction at higher out-of-roundness and out-of-straightness defect amplitudes.

Author(s):  
N. A. Leggatt ◽  
R. J. Dennis ◽  
P. J. Bouchard ◽  
M. C. Smith

Numerical methods have been established to simulate welding processes. Of particular interest is the ability to predict residual stress fields. These fields are often used in support of structural integrity assessments where they have the potential, when accurately characterised, to offer significantly less conservative predictions of residual profiles compared to those found in assessment codes such as API 579, BS7910 and R6. However, accurate predictions of residual stress profiles that compare favourably with measurements do not necessarily suggest an accurate prediction of component distortions. This paper presents a series of results that compare predicted distortions for a variety of specimen mock-ups with measurements. A range of specimen thicknesses will be studied including, a 4mm thick DH-36 ferritic plate containing a single bead, a 4mm thick DH-36 ferritic plate containing fillet welds, a 25mm thick 316L austenitic plate containing a groove weld and a 35mm thick esshete 1250 austenitic disc containing a concentric ring weld. For each component, distortion measurements have been compared with the predicted distortions with a number of key features being investigated. These include the influence of ‘small’ vs ‘large’ strain deformation theory, the ability to predict distortions using simplified analysis methods such as simultaneous bead deposition and the influence of specimen thickness on the requirement for particular analysis features. The work provides an extremely useful insight into how existing numerical methods used to predict residual stress fields can be utilised to predict the distortions that occur as a result of the welding fabrication process.


1988 ◽  
Vol 142 ◽  
Author(s):  
John F. Porter ◽  
Dan O. Morehouse ◽  
Mike Brauss ◽  
Robert R. Hosbons ◽  
John H. Root ◽  
...  

AbstractStudies have been ongoing at Defence Research Establishment Atlantic on the evaluation of non-destructive techniques for residual stress determination in structures. These techniques have included neutron diffraction, x-ray diffraction and blind-hole drilling. In conjunction with these studies, the applicability of these procedures to aid in metallurgical and failure analysis investigations has been explored. The x-ray diffraction technique was applied to investigate the failure mechanism in several bent turbo blower rotor shafts. All examinations had to be non-destructive in nature as the shafts were considered repairable. It was determined that residual stress profiles existed in the distorted shafts which strongly indicated the presence of martensitic microstuctures. These microstructures are considered unacceptable for these shafts due to the potential for cracking or in-service residual stress relaxation which could lead to future shaft distortion.


2008 ◽  
Vol 571-572 ◽  
pp. 277-282 ◽  
Author(s):  
Xu Song ◽  
Solène Chardonnet ◽  
Giancarlo Savini ◽  
Shu Yan Zhang ◽  
Willem J.J. Vorster ◽  
...  

The aim of the study presented here was to evaluate the residual stresses present in a bar of aluminium alloy 2124-T1 matrix composite (MMC) reinforced with 25vol% particulate silicon carbide (SiCp) using X-ray diffraction and 3D profilometry (curvature measurement using Mitutoyo/Renishaw coordinate measurement machine) and comparing these results with numerical models of residual strain and stress profiles obtained by a simple inelastic bending model and Finite Element Analysis (FEA). The residual strain distribution was introduced into the test piece by plastic deformation in the 4-point bending configuration. At the first stage of this study the elasticplastic behaviour of the MMC was characterized under static and cyclic loading to obtain the material parameters, hardening proprieties and cyclic hysteresis loops. Subsequently, synchrotron Xray diffraction and CMM curvature measurements were performed to deduce the residual stress profile in the central section of the bar. The experimental data obtained from these measurements were used in the inelastic bending and FEA simulations. The specimens were then subjected to incremental slitting using EDM (electric discharge machining) with continuous back and front face strain gauge monitoring. The X-ray diffraction and incremental slitting results were then analysed using direct and inverse eigenstrain methods. Residual stresses plots obtained by different methods show good agreement with each other.


2005 ◽  
Vol 40 (2) ◽  
pp. 199-209 ◽  
Author(s):  
V Fontanari ◽  
F Frendo ◽  
Th Bortolamedi ◽  
P Scardi

The incremental blind hole-drilling and the X-ray diffraction methods were used to measure the residual stress field introduced by shot peening in aluminium alloy 6082-T5 plates. Two peening treatments were selected to produce different depth extensions and peak values arising from different extents of plastic deformation in the surface layer. The results are discussed considering the various sources of uncertainty; in addition to the measuring technique, the effects of the surface treatment that usually induces a strong plastic deformation in the surface layer resulting in material work hardening and worsening of the surface morphology were considered. The residual stress profiles determined by the two methods showed quite good agreement for the two conditions, as regards the values both of the compressive peak and of the penetration depth. The present results provide mutual confirmation of the effectiveness of the two methods for the study of this class of materials.


2013 ◽  
Vol 768-769 ◽  
pp. 66-71 ◽  
Author(s):  
Diego Cecchin ◽  
Cristy Leonor Azanza Ricardo ◽  
Mirco D'Incau ◽  
Michele Bandini ◽  
Paolo Scardi

Aluminum alloy (Al-7075-T6) samples were analyzed to determine the in-depth residual stress profile induced by a shot-peening treatment. The influence of coverage degree and Almen intensity on the surface residual stress and on the sub-surface residual stress gradient was investigated. Residual stress profiles were obtained using three different techniques: (i) standard laboratory X-ray diffraction (XRD) residual stress analysis with progressive chemical layer-removal; (ii) XRD residual stress analysis with synchrotron radiation using different X-ray energies, thus changing the penetration depths, and (iii) Blind Hole Drilling (BHD). A comprehensive comparison of the results given by the used techniques is shown.


2021 ◽  
Author(s):  
Ruogu Zhang ◽  
Xiang Zan ◽  
Yinbo Zhu ◽  
HengAn Wu ◽  
Ping Gu ◽  
...  

Abstract Double-walled metal pipe is a special kind of pipe that maintains both heat transfer function and safety. In this paper, a method of fabricating double-walled pipes using tensile stresses is presented. The residual stress of the experimental sample was measured by X-ray diffraction. The behavior of pre-cracked pipes under axial compression was tested both experimentally and simulatively. The buckling deformation of the pipe causes the outer pipe to bulge up at the crack and separate from the inner pipe. The experimental results demonstrated this method can be used to construct effective double-walled pipes with properties that prevent cracks from penetrating the interface between the two layers of pipe.


2014 ◽  
Vol 996 ◽  
pp. 39-44 ◽  
Author(s):  
Masayoshi Kumagai ◽  
Koichi Akita ◽  
Muneyuki Imafuku ◽  
Shinichi Ohya

Microstructure and residual stress in AISI316 stainless steels processed via shot peening (SP) and laser peening (LP) were evaluated using X-ray line profile analysis and residual stress measurements. Although both specimens exhibited similar compressive residual stress profiles in the depth direction, the dislocation density in the SP specimen was greater than that in the LP specimen, while the crystallite size in the SP specimen was less than that of the LP specimen. Thus, the variation in the microstructural features in the samples subjected to the two processes differed.


2014 ◽  
Vol 996 ◽  
pp. 782-787 ◽  
Author(s):  
António Castanhola Batista ◽  
Joao P. Nobre ◽  
Daniel F.C. Peixoto ◽  
Luis A.A. Ferreira ◽  
Paulo M.S.T. de Castro ◽  
...  

Rolling contact fatigue twin-disc tests were performed on rail/wheel steels from Spanish high velocity trains (AVE). Residual stress profiles were determined using X-ray diffraction before and after cyclic loading. The evolution of residual stress profiles, due to cyclic loading, was analysed in order to study how they affect the rolling contact fatigue behaviour of these materials. This study is included in a major project where other related phenomena and materials’ properties have been studied.


2012 ◽  
Vol 706-709 ◽  
pp. 1696-1701
Author(s):  
M.Y. Toumi ◽  
A. Benmarouane ◽  
Herve Bonnefoy ◽  
Thomas Buslaps ◽  
Alain Lodini ◽  
...  

Synchrotron X-ray diffraction is reliable to measure residual stresses and characterize existing phases close to substrate/coating interface. In the present study, we focus on the cobalt-alloys coating deposited on stainless steel forging tools via Plasma Transfer Arc (PTA) process. Forging tools always work in high temperature conditions. Since fatigue crack is often detected near to the interface, we used synchrotron radiation to characterize residual stress profiles both in the substrate and coating sides. Also, we defined phases inside diluted substrate layers and in the stellite coating using a Rietveld refinement.


Sign in / Sign up

Export Citation Format

Share Document