Core-Based Evaluation of Associative Polymers as Enhanced Oil Recovery Agents in Oil-Wet Formations

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Reza Askarinezhad ◽  
Dimitrios Georgios Hatzignatiou ◽  
Arne Stavland

Linear coreflood experiments are performed at 60 °C to test the effectiveness of a low molecular weight associative polymer as a displacing agent, and its ability to enhance oil recovery on chemically treated oil-wet Berea cores. Polymer injection tests revealed high mobility reductions (resistance factor (RF)) and reduced remaining oil saturations. Results obtained suggest that the incremental oil production is due to the high mobility reduction, as reported previously for water-wet porous media. The reduced remaining oil saturation is a function of the injected associative polymer treatment volume. Polymer mobility reduction is highly affected by the injected polymer velocity; this reduction is observed to be more significant at the lower velocity spectrum. Therefore, the established incremental oil production, even at reduced polymer injection rates (lower capillary numbers), could be explained by the increased mobility reduction. A correlation for the velocity-dependent mobility reduction is developed. Results are in agreement with previously reported ones in water-wet media and related to the enhanced oil recovery (EOR) nature of the injected associative polymer as opposed to the traditional mobility control of other polymer types. During injection, a column of oil-polymer emulsion is formed gradually in the separator causing operational difficulties and introducing produced fluid measurement (and core fluid saturations) uncertainties. Produced oil/water emulsion polymer volume content is used to correct overestimated oil production attributed to measurement uncertainties. Real-time resistivity measurements could also be a valuable tool for both fluids saturation monitoring and improved core fluids saturation evaluation in flooded porous media.

2012 ◽  
Vol 524-527 ◽  
pp. 1807-1810
Author(s):  
Hao Chen ◽  
Sheng Lai Yang ◽  
Fang Fang Li ◽  
San Bo Lv ◽  
Zhi Lin Wang

CO2 flooding process has been a proven valuable tertiary enhanced oil recovery (EOR) technique. In this paper, experiment on extractive capacity of CO2 in oil saturated porous media was conducted under reservoir conditions. The main objectives of the study are to evaluate extractive capacity of CO2 in oil saturated natural cores and improve understanding of the CO2 flooding mechanisms, especially in porous media conditions. Experimental results indicated that oil production decreases while GOR increases with extractive time increases. the changes of the color and state of the production oil shows that oil component changes from light to heavy as extractive time increases. In addition, no oil was produced by water flooding after extractive experiment. Based on the experimental results and phenomena, the main conclusion drawn from this study is that under supercritical condition, CO2 has very powerful extractive capacity. And the application of CO2 flooding is recommended for enhancing oil recovery.


SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1186-1195 ◽  
Author(s):  
Hua Guo ◽  
Pacelli L.J. Zitha ◽  
Rien Faber ◽  
Marten Buijse

Summary This article reports a laboratory study of a novel alkaline/surfactant/foam (ASF) process. The goal of the study was to investigate whether foaming a specially designed alkaline/surfactant (AS) formulation could meet the two key requirements for a good enhanced oil recovery (EOR) [i.e., lowering the interfacial tension (IFT) considerably and ensuring a good mobility control]. The study included phase-behavior tests, foam-column tests, and computed-tomography (CT)-scan-aided corefloods. It was found that the IFT of the designed AS and a selected crude oil drops by four orders of magnitude at the optimum salinity. The AS proved to be a good foaming agent in the column tests and corefloods in the absence of oil. The mobility reduction caused by the AS foam was hardly sensitive to salinity and increased with decreasing foam quality. CT-scanned corefloods demonstrated that AS foam, after a small AS preflush, recovered almost all the oil left after waterflooding. The oil-recovery mechanism by ASF combines the formation of an oil bank and the transport of emulsified oil by flowing lamellae. Further optimization of the ASF is needed to ensure that the oil is produced exclusively by the oil bank.


2021 ◽  
Author(s):  
Qichao Lv ◽  
Tongke Zhou ◽  
Xing Zhang ◽  
Xinshu Guo ◽  
Zhaoxia Dong

Abstract CO2 foams have been used for a long time for enhanced oil recovery (EOR) and carbon capture, utilization, and storage. Note that conventional CO2 foam focuses on mobility control and storage of bare CO2. However, this technology has suffered from low storage efficiency and EOR because of foam instability. In this study, the geological storage of CO2 and coal fly ash (CFA) using Pickering foam for EOR was explored. The aim is to obtain an inexpensive method for EOR and storage of greenhouse gases and atmospheric pollutants. The Pickering foam was prepared using Waring blender method. The experiments were conducted to evaluate CO2/liquid interface enhancement by measuring the interfacial tension and interfacial viscoelastic modulus. As per the heterogeneous sandpack flooding experiments, the profile control capacity and the performance of oil displacement using CO2 foam enhanced by CFA were investigated. The amount of storage from dynamic aspects of CO2 and CFA was measured to demonstrate the storage law. The stability of aqueous foam was improved significantly after the addition of CFA. The half-life time of foam stabilized by CFA particles increased by more than about 11 times than that of foam without CFA particles. The interfacial dilatational viscoelastic modulus of CO2/foaming solution increased with CFA particle concentration increasing, indicating the interface transformed from liquid-like to solid-like. Flooding experiments in heterogeneous porous media showed that more produced fluid was displaced from the relatively low-permeability sandpack after the injection of CO2 foam with CFA. The oil recovery by CFA stabilized foam was improved by ~28.3% than that of foam without CFA particles. And the sequestration of CO2 in heterogeneous porous media was enhanced with the addition of CFA to CO2 foam, and the CFA stabilized foam displayed a strong resistance to water erosion for the storage of CO2 and CFA. This work introduces a win–win method for EOR and storage of CO2 and atmospheric pollutant particles. CFA from coal combustion was used as an enhancer for CO2 foam, which improved the interfacial dilatational viscoelasticity of foam film and the dynamic storage of CO2. Furthermore, the storage of CO2 and CFA contributed to improvement in sweep efficiency, and thus EOR.


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2018 ◽  
Author(s):  
Sandeep Kumar ◽  
Shuaib Ahmed Kalwar ◽  
Ghulam Abbas ◽  
Abdul Quddos Awan

Sign in / Sign up

Export Citation Format

Share Document