Investigation of the Stability of a Squeak Test Apparatus Based on an Analytical and Finite Element Models

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Gil Jun Lee ◽  
Jay Kim

Squeak is an unwanted, annoying noise generated by self-excited, friction-induced vibration. A unique squeak test apparatus that can generate squeak noises consistently was developed by modifying and employing a sprag-slip mechanism. Such an apparatus enables building database that accurately ranks squeak propensity of material pairs and will be highly useful for noise, vibration, and harshness (NVH) engineers and vehicle interior designers. An analytical model of the apparatus was developed to identify instability conditions that induce unstable, large-amplitude vibration, therefore squeak noises. A finite element model was established and studied in this work to refine the design of the apparatus and better understand underlying phenomena of the squeak generation. Complex eigenvalue analysis (CEA) was used to study the instability of the system and results show that the instability occurs by the coalescence of two modes, which makes the effective damping of one of the coalesced modes negative. The instability condition from the CEA shows good agreement with the results obtained from the analytical model. Furthermore, dynamic transient analysis (DTA) was performed to investigate the stability of the system and confirm the instability conditions identified from the CEA. The effects of main design parameters on the stability were investigated by DTA. The results obtained from the actual tests show that the test apparatus consistently generates unstable vibration of a very large amplitude, indicating generation of squeak noises.

Author(s):  
Hervé Algrain ◽  
Calogero Conti ◽  
Pierre Dehombreux

Abstract Finite Element Model Updating has for objective to increase the correlation between the experimental dynamic responses of a structure and the predictions from a model. Among different initial choices, these procedures need to establish a set of representative parameters to be updated in which some are in real error and some are not. It is therefore important to select the correct properties that have to be updated to ensure that no marginal corrections are introduced. In this paper the standard localization criteria are presented and a technique to separate the global localization criteria in family-based criteria for damped structures is introduced. The methods are analyzed and applied to both numerical and experimental examples; a clear enhancement of the results is noticed using the family-based criteria. A simple way to qualify the stability of a localization method to noise is presented.


2014 ◽  
Vol 6 (1) ◽  
pp. 19-25
Author(s):  
Gergely Máté Kiss ◽  
István Vajda

Abstract Co-simulation is a method which makes it possible to study the electric machine and its drive at once, as one system. By taking into account the actual inverter voltage waveforms in a finite element model instead of using only the fundamental, we are able to study the electrical machine's behavior in more realistic scenario. The recent increase in the use of variable speed drives justifies the research on such simulation techniques. In this paper we present the co-simulation of an inverter fed permanent magnet synchronous machine. The modelling method employs an analytical variable speed drive model and a finite element electrical machine model. By linking the analytical variable speed drive model together with a finite element model the complex simulation model enables the investigation of the electrical machine during actual operation. The methods are coupled via the results. This means that output of the finite element model serves as an input to the analytical model, and the output of the analytical model provides the input of the finite element model for a different simulation, thus enabling the finite element simulation of an inverter fed machine. The resulting speed and torque characteristics from the analytical model and the finite element model show a good agreement. The experiences with the co-simulation technique encourage further research and effort to improve the method.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


2003 ◽  
Vol 15 (02) ◽  
pp. 82-85 ◽  
Author(s):  
SHYH-CHOUR HUANG ◽  
CHANG-FENG TSAI

This paper presents results from using a 3-dimensional finite element model to assess the stress distribution in the bone, in the implant and in the abutment as a function of the implant's diameter and length. Increasing implant diameter and length increases the stability of the implant system. By using a finite element analysis, we show that implant length does not decrease the stress distribution of either the implant or the bone. Alternatively, however implant diameter increases reduce the stresses. For the latter case, the contact area between implant and bone is increased thus the stress concentration effect is decreased. Also, with increased implant diameter the bone loss is decreased and as a consequence the success rate is improved.


2000 ◽  
Author(s):  
Hsien-Chie Cheng ◽  
Ming-Hsiao Lee ◽  
Kuo-Ning Chiang ◽  
Chung-Wen Chang

Abstract Since the electrical conduction in the COG assembly using a non-conductive adhesive takes place through the connection of the bump and the electrodes, the contact resistance can be applied to the evaluation of the design quality as well as the overall reliability of the particular assembly. It should be further noted that as reported in the literature (e.g., see Liu, 1996; Kristiansen et al, 1998; Nicewarner, 1999; Timsit, 1999), the contact resistance between the bump and the electrode on the substrate strongly depends on the contact stress and the contact area. A higher reliability of the packaging somewhat relies on better contact stability as well as larger bonding stresses. In order to explore the physical contact behaviors of a non-conductive adhesive type of COG assemblies, the contact pressure during manufacturing process sequences and during the temperature variation are extensively investigated using a three-dimensional nonlinear finite element model. The so-called death-birth simulation technique is applied to model the manufacturing process sequences. The typical COG assemblies associated with two types of micro-bumps that are made of different materials: metal and composite are considered as the test vehicle. The contact stress between the electrode and the bump is extensively compared at each manufacturing sequence as well as at elevated temperature in order to investigate the corresponding mechanical interaction. Furthermore, the adhesion stresses of the adhesive are also evaluated to further investigate the possibilities of cracking or delamination within the adhesive and in its interfaces with the die and with the substrate. At last, a parametric finite element model is performed over number of geometry/material design parameters to investigate their impact on the contact/adhesion stresses so as to attain a better reliability design.


Author(s):  
Mohamed F. El-Amin ◽  
Jisheng Kou ◽  
Shuyu Sun

In this work, we introduce a theoretical foundation of the stability analysis of the mixed finite element solution to the problem of shale-gas transport in fractured porous media with geomechanical effects. The differential system was solved numerically by the Mixed Finite Element Method (MFEM). The results include seven lemmas and a theorem with rigorous mathematical proofs. The stability analysis presents the boundedness condition of the MFE solution.


2019 ◽  
Vol 14 ◽  
pp. 155892501988640
Author(s):  
Xiao-Shun Zhao ◽  
He Jia ◽  
Zhihong Sun ◽  
Li Yu

At present, most space inflatable structures are composed of flexible inflatable fabrics with complex undevelopable surfaces. It is difficult to establish a multi-dimensional folding model for this type of structure. To solve this key technical problem, the motion folding method is proposed in this study. First, a finite element model with an original three-dimensional surface was flattened with a fluid structure interaction algorithm. Second, the flattened surface was folded based on the prescribed motion of the node groups, and the final folding model was obtained. The fold modeling process of this methodology was consistent with the actual folding processes. Because the mapping relationship between the original finite element model and the final folding model was unchanged, the initial stress was used to modify the model errors during folding process of motion folding method. The folding model of an inflatable aerodynamic decelerator, which could not be established using existing folding methods, was established by using motion folding method. The folding model of the inflatable aerodynamic decelerator showed that the motion folding method could achieve multi-dimensional folding and a high spatial compression rate. The stability and regularity of the inflatable aerodynamic decelerator numerical inflation process and the consistency of the inflated and design shapes indicated the reliability, applicability, and feasibility of the motion folding method. The study results could provide a reference for modeling complex inflatable fabrics and promote the numerical study of inflatable fabrics.


2016 ◽  
Vol 858 ◽  
pp. 913-916 ◽  
Author(s):  
Konstantinos Zekentes ◽  
Konstantin Vassilevski ◽  
Antonis Stavrinidis ◽  
George Konstantinidis ◽  
Maria Kayambaki ◽  
...  

Purely vertical 4H-SiC JFETs have been modeled by using three different approaches: the analytical model, the finite element model and the compact model. The results of the modeling have been compared with experimental results on a series of fabricated self-aligned devices with two different channel lengths (0.3 and 1.1μm) and various channel widths (1.5, 2, 2.5, 3, 4 and 5 μm). For all the considered models I-V and C-V characteristics could be satisfactorily simulated.


Sign in / Sign up

Export Citation Format

Share Document