Technological Assurance of High-Efficiency Machining of Internal Rope Threads on Computer Numerical Control Milling Machines

Author(s):  
Anna Neshta ◽  
Dmytro Kryvoruchko ◽  
Michal Hatala ◽  
Vitalii Ivanov ◽  
Frantisek Botko ◽  
...  

The analysis of various methods of machining of rope internal thread ISO 10208, DIN 20317 has been carried out and the criteria of high-efficiency machining have been formulated. The concept of the method has been developed, which supposes the designing of the construction of noncore tool and the calculation of the parameters of mechanical trajectory with the purpose of ensuring the machining per one pass on the computer numerical control (CNC) milling machine. The compensation procedure of dimensional wear of insert has been developed. While machining the production batch of the parts in an experimental way, the optimum cutting conditions have been determined which allow ensuring the maximum efficiency on reaching the required roughness and the dimensional accuracy of the profile of rope thread. The performed statistical analysis of the machined parts allowed to establish that dispersions of the actual values of profiles' roughness follow Gauss' law. In an experimental way, it has been proved that the application of the proposed method increased the efficiency of machining of the internal rope thread by 2.5 times. On the basis of comparison of engineering-and-economical performance, the efficient fields of application of high-efficient method of machining of the rope threads have been determined.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4506 ◽  
Author(s):  
Hyungjung Kim ◽  
Woo-Kyun Jung ◽  
In-Gyu Choi ◽  
Sung-Hoon Ahn

In the new era of manufacturing with the Fourth Industrial Revolution, the smart factory is getting much attention as a solution for the factory of the future. Despite challenges in small and medium-sized enterprises (SMEs), such as short-term strategies and labor-intensive with limited resources, they have to improve productivity and stay competitive by adopting smart factory technologies. This study presents a novel monitoring approach for SMEs, KEM (keep an eye on your machine), and using a low-cost vision, such as a webcam and open-source technologies. Mainly, this idea focuses on collecting and processing operational data using cheaper and easy-to-use components. A prototype was tested with the typical 3-axis computer numerical control (CNC) milling machine. From the evaluation, availability of using a low-cost webcam and open-source technologies for monitoring of machine tools was confirmed. The results revealed that the proposed system is easy to integrate and can be conveniently applied to legacy machine tools on the shop floor without a significant change of equipment and cost barrier, which is less than $500 USD. These benefits could lead to a change of monitoring operations to reduce time in operation, energy consumption, and environmental impact for the sustainable production of SMEs.


2020 ◽  
Author(s):  
Jinyou Chai ◽  
Xiaoqian Liu ◽  
Ramona Schweyen ◽  
Jürgen Setz ◽  
Shaoxia Pan ◽  
...  

Abstract Background To evaluate the accuracy of a computer-aided design and computer-aided manufacturing (CAD-CAM) surgical guide for implant placement in edentulous jaws. Methods Nine patients with twelve edentulous jaws seeking implants were recruited. Radiographic guides with diagnostic templates were fabricated from try-in waxup dentures. Planning software (Organical® Dental Implant, Berlin, Germany) was used to virtually design the implant positions, and the radiographic templates were converted into surgical guides using computer numerical control (CNC) milling. Following the guided implant surgery protocol, forty-four implants were placed into twelve edentulous jaws. Cone-beam computed tomography (CBCT) scans were performed post-operatively for each jaw, and the deviations between the planned and actual implant positions were measured. Results All 44 implants survived, and no severe haematomas, nerve injuries or unexpected sinus perforations occurred. The mean three dimensional linear deviation of implant position between virtual planning and actual placement was 1.53 ± 0.48 mm at the implant neck and 1.58 ± 0.4 mm at the apex. The angular deviation was 3.96 ± 3.05 degrees. The mean deviation between virtual and actual implant position was significantly smaller in the maxilla than in the mandible. No significant differences were found in the deviation of implant position between cases with and without anchor pins. Conclusions The guides fabricated using the CAD-CAM CNC milling technique provided comparable accuracy as those fabricated by Stereolithography. The displacement of the guides on edentulous arch might be the main contributing factor of deviation. Trial registration: Chinese Clinical Trial Registry, ChiCTR-ONC-17014159


Author(s):  
Guangyu Hou ◽  
Matthew C. Frank

This paper introduces a new method that uses slice geometry to compute the global visibility map (GVM). Global visibility mapping is a fundamentally important process that extracts geometric information about an object, which can be used to solve hard problems, for example, setup and process planning in computer numerical control (CNC) machining. In this work, we present a method for creating the GVM from slice data of polyhedron models, and then show how it can help determine around which axis of rotation a part can be machined. There have been various methods of calculating the GVM to date, tracing back to the well-known seminal methods that use Gaussian mapping. Compared to the considerable amount of work in this field, the proposed method has an advantage of starting from feature-free models like stereolithography (STL) files and has adjustable resolution. Moreover, since it is built upon slicing the model, the method is embarrassingly parallelizable in nature, thus suitable for high-performance computing. Using the GVM obtained by this method, we generate an axis of rotation map to facilitate the setup planning for four-axis CNC milling machines as one implementation example.


2015 ◽  
Vol 761 ◽  
pp. 93-97
Author(s):  
M.A. Rahman ◽  
Nur Atiqah Md Sadan ◽  
Mohammad Minhat ◽  
Halim Isa ◽  
Abu Bakar Baharudin

Dimensional accuracy plays important criteria in producing high quality machined parts. This is a big challenge to manufacturers of precision components to produce good quality parts with minimum manufacturing error. The focus of this paper is to study the influence of the machine tool rigidity and cutting parameters on dimensional accuracy in turning operation. A method was prepared for identifying the factors effecting dimensional accuracy in a turning process. Experimental setup involved computerized numerical control (CNC) lathe machine, with VBMT 160404 carbide insert and mild steel, as cutting tool and workpiece respectively. The statistical analysis was used for analyzing and determining the accuracy of experimental data through Minitab statistical software. The regressions model was developed. The developed regression model could be used to predict the dimensional precision of the parts based on machine tool vibration and machining parameters during turning process. This is the aspect to be seriously considered and be applied in attaining sustainable machine tool development during design and development stage and its usage. This finding provides useful guidelines for manufacturers to produce high quality machined parts at minimum manufacturing cost. It was found that the cutting speed, feed rate, final part length, vibration x and vibration z have significant effects on dimensional accuracy of the machined parts.


2020 ◽  
Author(s):  
Gen Hayase ◽  
Daisuke Yoshino

High-strength macroporous monoliths can be obtained by simply mixing boehmite nanofiber aqueous acetate dispersions with methyltrimethoxysilane. On the boehmite nanofiber-polymethylsilsesquioxane monoliths, we can fabricate structures smaller than a millimeter in size by computer numerical control (CNC) milling, resulting in a machined surface that is superhydrophobic and biocompatible. Using this strategy, we fabricated a superhydrophobic multiwell plate which holds water droplets to produce 3D cell culture environments for various cell types. We expect these superhydrophobic monoliths to have future applications in 3D tissue construction.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xinan Li ◽  
Zhixiong Shen ◽  
Qinggui Tan ◽  
Wei Hu

Metasurfaces supply a planar approach for flexible wavefront manipulation, thus facilitating the integration and minimization of optical elements, especially in the terahertz (THz) range. High efficient THz metadevices are highly pursued at present. Here, we propose a bilayer design to improve the efficiency of metadevice. Two silicon pillar arrays with distinguishing geometries are integrated on single silicon substrate. On one side, elliptical silicon pillars, with geometry optimized for the target frequency, are spatially orientated to realize the desired Pancharatnam-Berry phase. On the other side, uniform circular silicon pillars are set to suppress the reflection. With this design, versatile metadevices such as lens, lens array, polarization fork grating, Bessel vortex generator, and Airy beam generator are demonstrated. Maximum efficiency up to 95% for the target frequency and excellent design flexibility are verified. It provides a practical strategy for the generation of compact and high-efficiency THz metadevices, which suit for high-performance THz imaging and communication apparatuses.


2020 ◽  
Vol 4 (1) ◽  
pp. 37
Author(s):  
Muhammad Jufrizaldy ◽  
Ilyas Ilyas ◽  
Marzuki Marzuki

Mesin CNC milling adalah mesin potong berbasis komputer yang dapat menjalankan proses secara otomatis pada berbagai macam perintah berbasis bahan yang telah diprogram ke dalam perangkat lunak. Pada tugas akhir kali ini akan dirancang dan diimplementasikan CNC (Computer Numerical Control) Router dengan menggunakan Program G-Code dengan menggunakan GBRL Kontroller sebagai pengontrol mesin CNC. Mikrokontroler digunakan untuk menerima G-Code dari PC yang dikirim ke mikrokontroler yang selanjutnya dikontrol menggunakan GBRL kontroller untuk menggerakan motor Stepper. Mesin CNC ini dikendalikan dengan menggunakan software GRBL dimana ketika program dimasukkan kedalam software tersebut, stepper motor, spindle serta mata bor akan bergerak. Perancangan ini menggunakan 3 buah stepper motor dimana setiap stepper motor berfungsi untuk menggerakkan sumbu X, Y dan Z. Spindle digunakan sebagai pengendali mata bor yang berfungsi untuk mengukir layout pada PCB.Kata kunci : Motor Stepper NEMA , Driver Motor Board T, Breakout Board , Power supply , Spindle Kit


2020 ◽  
Author(s):  
Jinyou Chai ◽  
Xiaoqian Liu ◽  
Ramona Schweyen ◽  
Jürgen Setz ◽  
Shaoxia Pan ◽  
...  

Abstract Background: To evaluate the accuracy of a computer numerical control (CNC) milled surgical guide for implant placement in edentulous jaws.Methods: Edentulous patients seeking implants treatment were recruited in this prospective cohort study. Radiographic guides with diagnostic templates were fabricated from wax-up dentures. Patients took cone-beam computed tomography (CBCT) wearing the radiopaque radiographic guides. Implant positions were virtually designed in the planning software based on the CBCT data, and the radiographic templates were converted into surgical guides using CNC milling technique. Forty-four implants were placed into 12 edentulous jaws following guided implant surgery protocol. Post-surgery CBCT scans were made for each jaw, and the deviations between the planned and actual implant positions were measured. Deviation of implant position was compared between maxilla and mandible, and between cases with and without anchor pins using independent t-test.Results: Nine patients (3 males and 6 females) with 12 edentulous jaws were recruited. The mean age of patients was 59.2±13.9 years old. All 44 implants was placed without complication and survived, The mean three dimensional linear deviation of implant position between virtual planning and actual placement was 1.53 ±0.48mm at the implant neck and 1.58 ±0.49 mm at the apex. The angular deviation was 3.96 ±3.05 degrees. No significant difference was found in the deviation of implant position between maxilla and mandible (P=0.28 at neck, 0.08 at apex), nor between cases with and without anchor pins (P=0.87 at neck, 0.06 at apex). Conclusions: The guides fabricated using the CNC milling technique provided comparable accuracy as those fabricated by Stereolithography. The displacement of the guides on edentulous arch might be the main contributing factor of deviation.Trial registration: Chinese Clinical Trial Registry, ChiCTR-ONC-17014159 (July 26, 2017)


Sign in / Sign up

Export Citation Format

Share Document