Neutronic Study of Burnable Poison Materials and Their Alternative Configurations in Fully Ceramic Microencapsulated Loaded Pressurized Water Reactor Fuel Assembly

2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Muhammad Qasim Awan ◽  
Liangzhi Cao ◽  
Hongchun Wu ◽  
Chuanqi Zhao

Use of FCM fuel in light water reactors is an attractive option for existing and future generations of these reactors to make them accident tolerant in nature. This work focuses on the neutronic study of the use of burnable material in various configurations to control the excess reactivity and to keep the moderator temperature coefficient of reactivity (MTC) feedback negative for entire cycle length. Erbia and gadolinia, two conventional materials are used in three different configurations including quadruple isotropic (QUADRISO), bi-isotropic (BISO), and Matrix Mix forms. The results obtained from the implicit random treatment of the double heterogeneity of tri-structural isotropic (TRISO), QUADRISO, and BISO particles show that the erbia is the best material to be used in QUADRISO and Matrix Mix configurations with lowest reactivity swing for the life cycle and residual poison well below 0.5%. Gadolinia is usable in FCM environment only in the BISO form where enhanced self-shielding controls the depletion performance of the material. The gadolinia has almost zero residual poison at end of cycle (EOC); however, it has relatively large reactivity swing, which will need more micromanagement of the control rods during the plant operations. At the beginning of cycle (BOC), erbia-loaded assemblies have shown an increase in negative value of MTC compared with reference due to presence of resonance peak in erbium near 1 eV. The finally recommended material-configuration combinations have shown the excess reactivity containment in desired manner with good depletion performance and negative feedback of the MTC for life cycle.

2021 ◽  
Vol 247 ◽  
pp. 10031
Author(s):  
Nicholas P. Luciano ◽  
Brian J. Ade ◽  
Kang Seog Kim ◽  
Andrew J. Conant

MPACT is a state-of-the-art core simulator designed to perform high-fidelity analysis using whole-core, three-dimensional, pin-resolved neutron transport calculations on modern parallel computing hardware. MPACT was originally developed to model light water reactors, and its capabilities are being extended to simulate gas-cooled, graphite-moderated cores such as Magnox reactors. To verify MPACT’s performance in this new application, the code is being formally benchmarked using representative problems. Progression problems are a series of example models that increase in complexity designed to test a code’s performance. The progression problems include both beginning-of-cycle and depletion calculations. Reference solutions for each progression problem have been generated using Serpent 2, a continuous-energy Monte Carlo reactor physics burnup calculation code. Using the neutron multiplication eigenvalue ke_ as a metric, MPACT’s performance is assessed on each of the progression problems. Initial results showed that MPACT’s multigroup cross section libraries, originally developed for pressurized water reactor problems, were not sufficient to accurately solve Magnox problems. MPACT’s improved performance on the progression problems is demonstrated using this new optimized cross section library.


Author(s):  
Jean-Franc¸ois Pignatel

Within the framework of the research program on innovative light water reactors, the SERI (Service of Studies on Innovative Reactors) of the French Atomic Energy Commission (CEA), is presenting a predictive study on the modeling of a low-power integral Pressurized Water Reactor, using the CATHARE thermalhydraulic code. The concept selected for this study is that of the SIR reactor project, developed by AEA-T and ABB consortium. This very interesting concept is no doubt that which is the most complete to this date, and on which most information in the literature can be obtained. Many safety calculations made with the RELAP code are also available and represent a highly interesting base for comparison purposes, in order to improve the approach on the results obtained with CATHARE. A comparison of the behavior of the two codes is thus presented in this article. This study therefore shows that CATHARE finely models this type of new PWR concept. The transients studied cover a large area, ranging from natural circulation to loss of primary coolant accidents. The ATWS and a power transient have also been calculated. The comparison made between the CATHARE and RELAP results shows a very good agreement between the two codes, and leads to a very positive conclusion on the pertinence of simulating an integral PWR. Moreover, even though this study is a thorough investigation on the subject, it confirms the potentially safe nature of the SIR reactor.


2021 ◽  
Vol 247 ◽  
pp. 10016
Author(s):  
Kang Seog Kim ◽  
Brian J. Ade ◽  
Nicholas P. Luciano

The Consortium for Advanced Simulation of Light Water Reactors (CASL) has developed the CASL toolset, Virtual Environment for Reactor Analysis (VERA), for pressurized water reactor (PWR) analysis. Recently the CASL VERA was improved for Magnox reactor analysis, which required the development of a new cross section library and new geometrical and thermal feedback capabilities for graphite-moderated Magnox reactors. The MPACT neutronics module of the CASL core simulator is a 3D whole core transport code, which requires a new cross section library with a different energy group structure due to the different neutronic characteristics of Magnox compared with PWR. A new 69-group structure was developed based on the MPACT 51-group structure to have more thermal energy groups and to be a subset of the SCALE 252-group structure. The ENDF/B-VII.1 MPACT 69-group library was developed for Magnox reactor analysis using the SCALE/AMPX and VERA-XSTools for which a super-homogenization method was applied, and transport cross sections were generated for graphite using a neutron leakage conservation method. Benchmark results show that new MPACT 69-group library works reasonably well for Magnox reactor analysis.


2021 ◽  
Vol 247 ◽  
pp. 06031
Author(s):  
Jean-François Vidal ◽  
K. Frölicher ◽  
P. Archier ◽  
A. Hébert ◽  
L. Buiron ◽  
...  

In the past few years, developments in the APOLLO3® deterministic code have mainly been devoted to Fast Reactor applications. In this paper, we investigate the possibility of using some of these methods to build an accurate two-step calculation scheme for commercial Pressurized Water Reactors, with application to the BEAVRS benchmark at hot zero power conditions of cycle 1. Our objective is to assess the performances of the best “standard” calculation currently possible with APOLLO3® and to have a starting point for the development of improved transport solvers and innovative calculation schemes. At the lattice level, we show that the subgroup method using the REL383 energy mesh, associated with a MOC flux calculation, provides accurate results on different clusters of 3x3 cells with UOX and MOX fuel, including a heterogeneity at the center (guide-tube full of water or with common absorbers Ag-In-Cd or B4C inserted, and mixed uranium-gadolinium oxide fuel). These good results have been confirmed on BEAVRS assembly, rods in and rods out. At the core level, 20-group 3D calculations with the MINARET Sn solver have been performed at the cell level to analyze BEAVRS Hot Zero Power results (reactivity, power map, and control rods worths). Results are rather satisfactory, considering the low computing cost, but the power map prediction needs to be improved.


2017 ◽  
Vol 110 ◽  
pp. 222-229 ◽  
Author(s):  
Wenchao Hu ◽  
Jianping Jing ◽  
Jinsheng Bi ◽  
Chuanqi Zhao ◽  
Bin Liu ◽  
...  

Author(s):  
Haoyang Yu ◽  
Bin Liu ◽  
Wenxin Zhang ◽  
Jin Cai

The minor actinides (MA) is important nuclides in the spent fuel which is bad for human ecological environment. Pressurized water reactor (PWR) is the main reactor type at commercial operation around world. It is important to find the appropriate loading patterns when introducing minor actinides to the PWR core. In this paper, we study the effect of MA transmutation in the PWR on fuel cycle. First, we use the MCNP program to simulate the model of PWR and the effective multiplication factor.Then,the MA is introduced into core in different ways and mass to simulate the effective multiplication factor. In conclusion,without considering chemical skim control and control rods, we change the thickness of the MA, until the keff closes to 1, We find that loading minor actinides to burnable poison rods for transmutation is an optimal minor actinide loading pattern.


Author(s):  
Peiwei Sun ◽  
Chong Wang

Small Pressurized Water Reactors (SPWR) are different from those of the commercial large Pressurized Water Reactors (PWRs). There are no hot legs and cold legs between the reactor core and the steam generators like in the PWR. The coolant inventory is in a large amount. The inertia of the coolant is large and it takes a long time for the primary system to respond to disturbances. Once-through steam generator is adopted and its water inventory is small. It is very sensitive to disturbances. These unique characteristics challenge the control system design of an SPWR. Relap5 is used to model an SPWR. In the reactor power control system, both the reactor power and the coolant average temperature are regulated by the control rod reactivity. In the feedwater flow control system, the coordination between the reactor and the turbine is considered and coolant average temperature is adopted as one measurable disturbance to balance them. The coolant pressure is adjusted based on the heaters and spray in the pressurizer. The water level in the pressurizer is controlled by the charging flow. Transient simulations are carried out to evaluate the control system performance. When the reactor is perturbed, the reactor can be stabilized under the control system.


Author(s):  
Pierre Moussou ◽  
Vincent Fichet ◽  
Luc Pastur ◽  
Constance Duhamel ◽  
Yannick Tampango

Abstract In order to better understand the mechanisms of fretting wear damage of guide cards in some Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP), an experimental investigation is undertaken at the Magaly facility in Le Creusot. The test rig consists of a complete Rod Cluster with eleven Guide Cards, submitted to axial flow inside a water tunnel. In order to mimic the effect of fretting wear, the four lower guide cards have enlarged gaps, so that the Control Rods are free to oscillate. The test rig is operated at ambient temperature and pressure, and Plexiglas walls can be arranged along its upper part, and a series of camera records the vibrations of the control rods above and below the guide cards. The vertical flow velocity is in the range of a few m/s. Beam-like pinned-pinned modes at about 5 Hz are observed, and oscillations of several mm of the central rods are measured, which come along with impacts at the higher flow velocities. A simple non-linear calculation reveals that the main effect of the impacts between Control Rods and Guide Cards is an increase of the natural frequency of the rods by about 10%. Furthermore, as the vibration spectra collapse remarkably well with the flow velocity, the experiments prove that turbulent forcing is responsible for the large oscillations of the control rods, no other mechanism being involved.


Sign in / Sign up

Export Citation Format

Share Document