scholarly journals Real-Time Trajectory Generation for Haptic Feedback Manipulators in Virtual Cockpit Systems

Author(s):  
Shiyu Zhang ◽  
Shuling Dai

To obtain real-time interactions in the virtual cockpit system (VCS), a real-time trajectory generation method based on dynamical nonlinear optimization and regression prediction for the haptic feedback manipulator (HFM) is presented in this paper. First, a haptic feedback system based on servoserial manipulator is constructed. Then, the trajectory planning problem for the HFM is formulated as a nonlinear optimization problem to balance the motion time and power consumption and ensure the safety of physical human–robot interactions (pHRI). Multiple optimization problems are solved to generate the optimal database off-line. Finally, the classified multivariate (CM) regression method is presented to learn the database and generate optimal trajectories with arbitrary initial and objective positions on-line. Results show that trajectories with rapidity, safety, and lower power consumption can be generated in real-time by this method, which lay a basis of haptic interactions in the VCS.

2014 ◽  
Vol 541-542 ◽  
pp. 1473-1477 ◽  
Author(s):  
Lei Zhang ◽  
Zhou Zhou ◽  
Fu Ming Zhang

This paper describes a method for vehicles flying Trajectory Planning Problem in 3D environments. These requirements lead to non-convex constraints and difficult optimizations. It is shown that this problem can be rewritten as a linear program with mixed integer linear constraints that account for the collision avoidance used in model predictive control, running in real-time to incorporate feedback and compensate for uncertainty. An example is worked out in a real-time scheme, solved on-line to compensate for the effect of uncertainty as the maneuver progresses. In particular, we compare receding horizon control with arrival time approaches.


Author(s):  
Wei-Ye Zhao ◽  
Suqin He ◽  
Chengtao Wen ◽  
Changliu Liu

Abstract Applying intelligent robot arms in dynamic uncertain environments (i.e., flexible production lines) remains challenging, which requires efficient algorithms for real time trajectory generation. The motion planning problem for robot trajectory generation is highly nonlinear and nonconvex, which usually comes with collision avoidance constraints, robot kinematics and dynamics constraints, and task constraints (e.g., following a Cartesian trajectory defined on a surface and maintain the contact). The nonlinear and nonconvex planning problem is computationally expensive to solve, which limits the application of robot arms in the real world. In this paper, for redundant robot arm planning problems with complex constraints, we present a motion planning method using iterative convex optimization that can efficiently handle the constraints and generate optimal trajectories in real time. The proposed planner guarantees the satisfaction of the contact-rich task constraints and avoids collision in confined environments. Extensive experiments on trajectory generation for weld grinding are performed to demonstrate the effectiveness of the proposed method and its applicability in advanced robotic manufacturing.


Author(s):  
Jean-Claude Leon ◽  
Thomas Dupeux ◽  
Jean-Rémy Chardonnet ◽  
Jérôme Perret

Achieving grasping tasks in real time with haptic feedback may require the control of a large number of degrees of freedom (DOFs) to model hand and finger movements. This is mandatory to grasp objects with dexterity. Here, a new device called HaptiHand is proposed that can be added to a haptic feedback arm and provide the user with enough DOFs so that he/she can intuitively and dexterously grasp an object, modify the virtual hand configuration and number of fingers with respect to the object while manipulating the object. Furthermore, this device is non-invasive and enables the user to apply forces on the fingers of the virtual hand. The HaptiHand lies inside the user’s hand so that the user can apply and release pressure on it in a natural manner that is transferred to the virtual hand using metaphors. The focus is placed on the description of the technology and structure of the HaptiHand to justify the choices and explain the behavior of the HaptiHand during object grasping and releasing tasks. This is combined with a short description of the models used.


2014 ◽  
Vol 536-537 ◽  
pp. 959-964 ◽  
Author(s):  
Xi Yang Ou ◽  
Xing Zhe Hou ◽  
Ke Zheng ◽  
Xiang Du ◽  
Jing Ji

This paper presents a real-time interpolation algorithm of the space trajectory which based on the theory of coordinate transform. The algorithm can solve the path planning problem of six-DOF robot. According to the actual movement state of robot, the algorithm can obtain some key points for the robot motion path by teaching. Then it can realize the dimensional random trajectory interpolation by coordinate transformation after building a suitable dimensional coordinate. Finally it can obtain the corresponding joint angle though the inverse kinematics solution. The experimental results show that this algorithm has a good rapidity and practicality, it suit for the six-DOF robot real-time trajectory interpolation, so it is worth promoting.


1994 ◽  
Vol 33 (01) ◽  
pp. 60-63 ◽  
Author(s):  
E. J. Manders ◽  
D. P. Lindstrom ◽  
B. M. Dawant

Abstract:On-line intelligent monitoring, diagnosis, and control of dynamic systems such as patients in intensive care units necessitates the context-dependent acquisition, processing, analysis, and interpretation of large amounts of possibly noisy and incomplete data. The dynamic nature of the process also requires a continuous evaluation and adaptation of the monitoring strategy to respond to changes both in the monitored patient and in the monitoring equipment. Moreover, real-time constraints may imply data losses, the importance of which has to be minimized. This paper presents a computer architecture designed to accomplish these tasks. Its main components are a model and a data abstraction module. The model provides the system with a monitoring context related to the patient status. The data abstraction module relies on that information to adapt the monitoring strategy and provide the model with the necessary information. This paper focuses on the data abstraction module and its interaction with the model.


2010 ◽  
Vol 5 (3) ◽  
Author(s):  
Cheng-Nan Chang ◽  
Li-Ling Lee ◽  
Han-Hsien Huang ◽  
Ying-Chih Chiu

The performance of a real-time controlled Sequencing Batch Membrane Bioreactor (SBMBR) for removing organic matter and nitrogen from synthetic wastewater has been investigated in this study under two specific ammonia loadings of 0.0086 and 0.0045g NH4+-N gVSS−1 day−1. Laboratory results indicate that both COD and DOC removal are greater than 97.5% (w/w) but the major benefit of using membrane for solid-liquid separation is that the effluent can be decanted through the membrane while aeration is continued during the draw stage. With a continued aeration, the sludge cake layer is prevented from forming thus alleviating the membrane clogging problem in addition to significant nitrification activities observed in the draw stage. With adequate aeration in the oxic stage, the nitrogen removal efficiency exceeding 99% can be achieved with the SBMBR system. Furthermore, the SBMBR system has also been used to study the occurrence of ammonia valley and nitrate knee that can be used for real-time control of the biological process. Under appropriate ammonia loading rates, applicable ammonia valley and nitrate knee are detected. The real-time control of the SBMBR can be performed based on on-line ORP and pH measurements.


1999 ◽  
Vol 39 (9) ◽  
pp. 201-207
Author(s):  
Andreas Cassar ◽  
Hans-Reinhard Verworn

Most of the existing rainfall runoff models for urban drainage systems have been designed for off-line calculations. With a design storm or a historical rain event and the model system the rainfall runoff processes are simulated, the faster the better. Since very recently, hydrodynamic models have been considered to be much too slow for real time applications. However, with the computing power of today - and even more so of tomorrow - very complex and detailed models may be run on-line and in real time. While the algorithms basically remain the same as for off-line simulations, problems concerning timing, data management and inter process communication have to be identified and solved. This paper describes the upgrading of the existing hydrodynamic rainfall runoff model HYSTEM/EXTRAN and the decision finding model INTL for real time performance, their implementation on a network of UNIX stations and the experiences from running them within an urban drainage real time control project. The main focus is not on what the models do but how they are put into action and made to run smoothly embedded in all the processes necessary in operational real time control.


Sign in / Sign up

Export Citation Format

Share Document