The Energy Absorption Behavior of Cruciforms Designed by Kirigami Approach

2018 ◽  
Vol 85 (12) ◽  
Author(s):  
Caihua Zhou ◽  
Shizhao Ming ◽  
Tong Li ◽  
Bo Wang ◽  
Mingfa Ren

The cruciforms are widely employed as energy absorbers in ships and offshore structures, or basic components in sandwich panel and multicell structure. The kirigami approach is adopted in the design of cruciform in this paper for the following reasons. First, the manufacture process is simplified. Second, it can alter the stiffness distribution of a structure to trigger desirable progressive collapse modes (PCMs). Third, the kirigami pattern can be referred as a type of geometric imperfection to lower the initial peak force during impact. Experiments and numerical simulations were carried out to validate the effectiveness of kirigami approach for cruciform designs. Numerical simulations were carried out to perform comparative and parametric analyses. The comparative studies among single plate (SP), single plate with kirigami pattern (SPKP), and kirigami cruciform (KC) show that the normalized mean crushing force of KC is nearly two times higher than those of SP and SPKP, whereas the normalized initial peak force of KC reduces by about 20%. In addition, the parametric analyses suggest that both the parameters controlling the overall size (i.e., the global slenderness and local slenderness) and those related to the kirigami pattern (i.e., the length ratio and the relative position ratio) could significantly affect the collapse behavior of the cruciforms.

2009 ◽  
Vol 76 (4) ◽  
Author(s):  
S. B. Bodlani ◽  
S. Chung Kim Yuen ◽  
G. N. Nurick

This two-part article reports the results of experimental and numerical works conducted on the energy absorption characteristics of thin-walled square tubes with multiple circular hole discontinuities. Part I presents the experimental tests in which dynamic and quasistatic axial crushings are performed. The mild steel tubes are 350 mm in length, 50 mm wide, and 1.5 mm thick. Circular hole discontinuities, 17 mm in diameter, are laterally drilled on two or all four opposing walls of the tube to form opposing hole pairs. The total number of holes varies from 2 to 10. The results indicate that the introduction of holes decreases the initial peak force but an increase in the number of holes beyond 2 holes per side does not further significantly decrease the initial peak force. The findings show that strategic positioning of holes triggers progressive collapse hence improving energy absorption. The results also indicate that the presence of holes may at times disrupt the formation of lobes thus compromising the energy absorption capacity of the tube. In Part II, the finite element package ABAQUS/EXPLICIT version 6.4–6 is used to model the dynamic axial crushing of the tubes and to investigate the action of the holes during dynamic loading at an impact velocity of 8 m/s.


2009 ◽  
Vol 76 (4) ◽  
Author(s):  
S. B. Bodlani ◽  
S. Chung Kim Yuen ◽  
G. N. Nurick

This paper is Part II of a two-part article and presents the results of numerical simulations conducted to investigate the energy absorption characteristics of square tubes subjected to dynamic axial loading. Part I reports the experimental results of both quasistatic and dynamic tests. The validated model is used to study the crushing characteristics of tubes with multiple induced circular hole discontinuities using the finite element package ABAQUS/EXPLICIT version 6.4-6. Holes of diameter 17 mm are used as crush initiators, which are laterally drilled into the tube wall to form opposing hole pairs. Holes of diameters 12.5 mm and 25 mm are also used to assess the effects of hole diameter on energy absorption. Two hole spacing configurations are investigated, one in which the hole pairs are placed at regular intervals of 50 mm along the tube wall and another in which the hole pairs are spaced symmetrically along the tube length. Holes are also drilled on either two or all four opposing tube walls. The number of holes is varied from 2 to 10. The results indicate that the introduction of the holes decreases the initial peak force. However, an increase in the number of holes, beyond two holes, does not further significantly decrease the initial peak force. A study of the crushing history of the tubes reveals that crushing is initiated at the location of the holes. The results also indicate that the type of hole spacing determines how crushing is initiated at the hole locations. The model satisfactorily predicts the resultant collapse shapes but overpredicts the crushed distance.


2019 ◽  
Vol 8 (4) ◽  
pp. 10987-10993

Crash box are the structural part designed to absorb energy during crash and minimize the injury to passengers. Various design of energy absorbers has been introduced to unleash design with the best crashworthiness behavior. Foam-filled structures are one of the promising designs. In this study, foam-filled structure was investigated to increase the energy absorption capability and reduce the initial peak force simultaneously. Since most foam-filled structures tend to absorb more energy with high peak force, optimization of the energy absorbers is significant in obtaining the optimum design. Response surface methodology (RSM) has been dominant technique in crashworthiness optimization mainly because of it provides efficient and accurate solution. This paper focused on the optimization foam-filled columns with respect to thickness of the tube and length of foam to enhance energy absorptions and reduce initial peak force. The optimization results suggested by Design Expert software for impact test is 515.9 J for EA and 134.94kN for IPF value with the column thickness of 2.0mm and foam length of 185mm. For quasi-static test, the optimum solution value for EA and IPF are 864.5J and 88.33kN respectively with column thickness of 1.87mm and foam length of 200mm.


Author(s):  
Jiayao Ma ◽  
Zhong You

Crash boxes in automobiles are often made from thin-walled tubes. They are designed to absorb energy when subjected to axial crushing. In this paper we present a novel crash box known as the origami crash box. It is produced by pre-folding the surface of a thin-walled tube according to a developable origami pattern. The pre-folded surface serves both as a type of geometric imperfection to lower the initial peak force, and as a mode inducer to trigger a collapse mode that is more efficient in terms of energy absorption. Numerical simulation of quasi-static axial crushing of the origami crash box has shown that a new collapse mode deemed the completed diamond mode can be triggered in tubes with square, rectangular, and polygonal cross sections and tapered shapes, leading to both a substantial gain in overall energy absorption, while at the same time, a reduction in initial peak force.


2021 ◽  
Author(s):  
D. Maneiah ◽  
A. Praveen Kumar ◽  
M. Shunmugasundaram ◽  
Debasish Mishra ◽  
D. Sravani

Author(s):  
Paula T. Nascimento ◽  
Marco A. P. Rosas ◽  
Leonardo Brandão ◽  
Fernando Castanheira

The present study compares the progressive collapse approach with the traditional temperature screening method on determination of PFP requirements at topside offshore structures. The advantage to evaluate the consequences of fire scenarios on the global integrity and stability of topside modules can be revealed by a substantial reduction of the required amount of PFP, and consequently significant cost savings for operators, when compared to the traditional approach. In the case study presented in this paper, there is a reduction of 79% in PFP allocation.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Rasool Ahmadi ◽  
Omid Rashidian ◽  
Reza Abbasnia ◽  
Foad Mohajeri Nav ◽  
Nima Usefi

An experimental test was carried out on a 3/10 scale subassemblage in order to investigate the progressive collapse behavior of reinforced concrete (RC) structures. Investigation of alternative load paths and resistance mechanisms in scaled subassemblage and differences between the results of full-scale and scaled specimens are the main goals of this research. Main characteristics of specimen response including load-displacement curve, mechanism of formation and development of cracks, and failure mode of the scaled specimen had good agreement with the full-scale specimen. In order to provide a reliable numerical model for progressive collapse analysis of RC beam-column subassemblages, a macromodel was also developed. First, numerical model was validated with experimental tests in the literature. Then, experimental results in this study were compared with validated numerical results. It is shown that the proposed macromodel can provide a precise estimation of collapse behavior of RC subassemblages under the middle column removal scenario. In addition, for further evaluation, using the validated numerical model, parametric study of new subassemblages with different details, geometric and boundary conditions, was also done.


2021 ◽  
Author(s):  
Yang Yang ◽  
Xilu Zhao ◽  
Ichiro Hagiwara

Abstract In the crash collision, the vehicle energy absorbers play an important role in the energy absorbed performance. Current vehicle energy absorbers have two defects during collision, such as only 70 % collapsed in its length and high initial peak load. It is because present energy absorbed column is the most primitive from the point of Origami structure. We developed the column so called Reversed Spiral Origami Structure; RSO which solves these 2 defects. However, for RSO, the manufacturing cost of hydroforming in the existing technology is too expensive to be applied in real vehicle structure. To address the problems, we have developed a new molding method called “Partial-heating torsion molding method”. And we have developed RTO (Reversed Torsion Origami Structure) by this new molding method at a very low cost. We show this RTO also solves the two defects of the present vehicle absorbers by not only simulation but also experiments. This structure is possible to replace conventional energy absorbers and it is expected to be widely used such as not only in automobile structures but also in building ones.


Sign in / Sign up

Export Citation Format

Share Document