A Novel Origami Crash Box With Varying Profiles

Author(s):  
Jiayao Ma ◽  
Zhong You

Crash boxes in automobiles are often made from thin-walled tubes. They are designed to absorb energy when subjected to axial crushing. In this paper we present a novel crash box known as the origami crash box. It is produced by pre-folding the surface of a thin-walled tube according to a developable origami pattern. The pre-folded surface serves both as a type of geometric imperfection to lower the initial peak force, and as a mode inducer to trigger a collapse mode that is more efficient in terms of energy absorption. Numerical simulation of quasi-static axial crushing of the origami crash box has shown that a new collapse mode deemed the completed diamond mode can be triggered in tubes with square, rectangular, and polygonal cross sections and tapered shapes, leading to both a substantial gain in overall energy absorption, while at the same time, a reduction in initial peak force.

Author(s):  
Degao Hou ◽  
Yan Chen ◽  
Jiayao Ma ◽  
Zhong You

Thin-walled tubes are widely used as energy absorption devices in automobiles, designed to protect the costly structures and people inside during an impact event through plastic deformation. They show excellent performance under axial loading in terms of weight efficiency, stroke distance and total energy absorption, but also have the disadvantage that the crushing force is not uniform during deformation process, especially with the existence of a high initial peak force. Recently, pattern design on tubular structures has received increasing attention. It has been found that, if the surface of a tube is pre-folded according to an origami pattern, the collapse mode of the tube can be altered, leading to changes in energy absorption performance. In this paper, we present a series of origami patterned tubes with a kite-shape pattern that is constructed by joining two pieces of Miura-ori. First of all, the geometry of the pattern is presented. We develop a theoretical model to predict the energy absorption associated with the axial crushing of the patterned tubes and derive a mathematical formula to calculate the mean crushing force accordingly. Secondly, a family of origami tubes with various profiles are designed, and their performances subjected to quasi-static axial crushing are numerically investigated. A parametric study is also conducted to establish the relationship between the pre-folded angle of the pattern and the initial peak force as well as the mean crushing force. Numerical results show that introducing patterns to thin-walled tubes offers three advantages in comparison with conventional tubes, i.e., a lower initial peak force, a more uniform crushing load, and a stable and repeatable collapse mode. A 36.0% increase in specific energy absorption and 67.2% reduction in initial peak force is achieved in the optimum case. The new origami patterned tubes show great promise as energy absorption devices.


2016 ◽  
Vol 10 (2) ◽  
pp. 90 ◽  
Author(s):  
Prescilla Christy Albert ◽  
Amir Radzi Ab Ghani ◽  
Mohd Zaid Othman ◽  
Ahmad Mujahid Ahmad Zaidi

<span style="font-size: 10pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">The study of axial crushing behavior is important in designing crashworthy structures especially in automotive applications. The axial crushing of thin-walled tube has better energy absorption capability. Thus, introducing milled geometrical shapes on thin-walled tube may improve the energy absorption performance. The improvement of the crush response is determined through the reduction of the Initial Peak Force (IPF) and the increase of the Specific Energy Absorption (SEA). This was done by employing origami pattern milled on the surface of thin-walled square tube which was investigated experimentally and numerically. The material used for the tube was aluminum alloy 6063-T5. The simulation results were validated by experiments which were conducted using <span style="text-transform: uppercase;">Instron</span> 3382 Universal Testing Machine and <span style="text-transform: uppercase;">Instron Dynatup</span> 8250 Drop Hammer Machine. The numerical simulation then progressed by varying parameters such as dimensions and configurations of the origami pattern on the square tube. ABAQUS finite element (FE) software was used to conduct the numerical simulation. The result of employing the origami square pattern on square tube is expected to improve the crush response by lowering the IPF and increasing the SEA. The obtained results were then compared with the conventional square tube where the origami pattern on square tube enhanced the crush performance.</span>


2014 ◽  
Vol 566 ◽  
pp. 569-574 ◽  
Author(s):  
Jia Yao Ma ◽  
Zhong You

The bumper beam of a transport vehicle conventionally is commonly made from thin-walled materials with a shallow curved profile, with either opened or closed cross sections. Upon lateral crushing, it fails in a bending collapse mode characteristic of formation of a limited number of plastic hinges along the beam. This paper presents a novel structure known as the origami beam. It is a thin-walled shallow curved beam of square cross section whose surface is pre-folded according to an origami pattern. The origami pattern serves as a mode inducer to trigger a collapse mode that is more efficient in terms of energy absorption. Numerical simulation of the beam subjected to quasi-static lateral loading shows that a new collapse mode, referred to as the longitudinal folding mode featuring shortening of beam in the longitudinal direction prior to the formation of plastic hinges, can be triggered by the pre-folded origami pattern, leading to higher energy absorption and lower peak force than those of conventional ones. An increase in specific energy absorption (ratio between energy absorption and weight of the structure) of 23.6% being achieved in an optimum case, while the peak force is also reduced by 12.9%. Our work demonstrates that applying origami patterns to shallow curved thin-walled beams can effectively induce new collapse modes on the structures and increase the energy absorption capability.


2019 ◽  
Vol 10 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Jiayao Ma ◽  
Huaping Dai ◽  
Mengyan Shi ◽  
Lin Yuan ◽  
Yan Chen ◽  
...  

Abstract. Thin-walled tubes are widely used as energy absorption devices for their low cost and high manufacturability. Introduction of the origami technique enables the tube to follow a pre-determined failure mode and to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of the origami crash box under quasi-static axial crushing. Both experimental and numerical results show that the origami pattern develops a diamond-shaped mode, bringing a reduction in initial peak force and a significant increase in energy absorption compared to the conventional hexagonal tube. The sensitivity of its energy absorption performance to various parameters is studied, and it is shown to achieve 68.29 % increase in the specific energy absorption and 13.91 % reduction in the initial peak force in the optimal case. Furthermore, an analytical solution is presented for the energy absorption, which achieves reasonable agreement with the numerical results.


2013 ◽  
Vol 81 (1) ◽  
Author(s):  
Jiayao Ma ◽  
Zhong You

Thin-walled tubes subjected to axial crushing have been extensively employed as energy absorption devices in transport vehicles. Conventionally, they have a square or rectangular section, either straight or tapered. Dents are sometimes added to the surface in order to reduce the initial buckling force. This paper presents a novel thin-walled energy absorption device known as the origami crash box that is made from a thin-walled tube of square cross section whose surface is prefolded according to a developable origami pattern. The prefolded surface serves both as a type of geometric imperfection to lower the initial buckling force and as a mode inducer to trigger a collapse mode that is more efficient in terms of energy absorption. It has been found out from quasi-static numerical simulation that a new collapse mode referred to as the completed diamond mode, which features doubled traveling plastic hinge lines compared with those in conventional square tubes, can be triggered, leading to higher energy absorption and lower peak force than those of conventional ones of identical weight. A parametric study indicates that for a wide range of geometric parameters the origami crash box exhibits predictable and stable collapse behavior, with an energy absorption increase of 92.1% being achieved in the optimum case. The origami crash box can be stamped out of a thin sheet of material like conventional energy absorption devices without incurring in-plane stretching due to the developable surface of the origami pattern. The manufacturing cost is comparable to that of existing thin-walled crash boxes, but it absorbs a great deal more energy during a collision.


2014 ◽  
Vol 606 ◽  
pp. 181-185 ◽  
Author(s):  
S. Kanna Subramaniyan ◽  
Arun Kumar Kananasan ◽  
Mohd Radzi Mohamed Yunus ◽  
Shahruddin Mahzan ◽  
Mohd Imran Ghazali

An experimental investigation was conducted to compare the crush characteristics and energy absorption capacity of circular and square tubes with located through-hole crush initiator. Circular through-holes were fabricated at three different configurations based on location into steel tubes which had a length of 200 mm. Furthermore, two different side configurations along the tube were considered for introducing the crush initiators. The results found that adding crush initiator onto the tubes were effectively reduced the initial peak force of a thin-walled circular and square tubes under axial quasi-static loading. The peak crush force was reduced within a range 3-10% and 5-16% for circular and square tubes respectively when compared with corresponding tubes without crush initiator. Moreover, the energy absorption capacity of the tubes was independent with the incorporation of through-hole crush initiators. However, the energy absorption of circular and square tubes were slightly decreases when compared with the tubes fabricated four sided crush initiation and tubes without crush initiator. Overall, the effect of location and number of crush initiation proved significantly influences the initial peak forces while maintain the energy absorbed.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cheng‐long Wang ◽  
Yifang Chen ◽  
QingLiang Zeng ◽  
Guoming Liu

In order to solve the problem of poor antiimpact ability of hydraulic support under rock bursting, a kind of thin-walled cylinder crushing component used in the composite spiral antiimpact device was developed, and different structural models were proposed and simulated. On this basis, the model was verified by experiments. The results show that the arrangement of the hollow structure can restrain the ring mode deformation and Euler instability of the tube member in the crushing yield and can carry out the buckling deformation according to the expected crushing force during the compression deformation process and effectively reduce the initial peak force. The arrangement of guide grooves can make the buckling deformation more stable and regular, which can effectively reduce the initial peak force and elastic displacement. With the smaller wall thickness and the smaller wall thickness of the induced groove, the effective deformation yield stroke of the crushing member increases, and the initial peak force, total energy absorption, average reaction force, and elastic displacement decrease. The simulation results are consistent with the experimental results which will be used in the future works.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


Sign in / Sign up

Export Citation Format

Share Document