Influence of Lubricant Pressure Response on Subsurface Stress in Elastohydrodynamically Lubricated Finite Line Contacts

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Tobias Hultqvist ◽  
Aleks Vrcek ◽  
Braham Prakash ◽  
Pär Marklund ◽  
Roland Larsson

In order to adapt to increasingly stringent CO2 regulations, the automotive industry must develop and evaluate low cost, low emission solutions in the powertrain technology. This often implies increased power density and the use of low viscosity oils, leading to additional challenges related to the durability of various machine elements. Therefore, an increased understanding of lubricated contacts becomes important where oil viscosity–pressure and compressibility–pressure behavior have been shown to influence the film thickness and pressure distribution in elastohydrodynamic lubrication (EHL) contacts, further influencing the durability. In this work, a finite line EHL contact is analyzed with focus on the oil compressibility–pressure and viscosity–pressure response, comparing two oils with relatively different behavior and its influence on subsurface stress concentrations in the contacting bodies. Results indicate that increased pressure gradients and pressure spikes, and therefore increased localized stress concentrations, can be expected for stiffer, less compressible oils, which under transient loading conditions not only affect the outlet but also the edges of the roller.

1983 ◽  
Vol 105 (4) ◽  
pp. 598-604 ◽  
Author(s):  
A. Mostofi ◽  
R. Gohar

In this paper, a numerical solution to the elastohydrodynamic lubrication (EHL) problem is presented for a cylindrical roller with axially profiled ends, rolling over a flat plane. Convergence was obtained for moderate load and material parameters (glass, steel, and a mineral oil). Isobars, contours, and section graphs, show pressure variation and film shape. Predictions of film thickness compare favorably with experiments which use the optical interference method, as well as with other theoretical results for an infinite line contact, or an ellipse having a long slender aspect ratio. The maximum EHL pressure occurs near the start of the profiling and can exceed pressure concentrations there predicted by elastostatic theory.


Author(s):  
Shivam S Alakhramsing ◽  
Matthijn B de Rooij ◽  
Dirk J Schipper ◽  
Mark van Drogen

In cam–roller follower units two lubricated contacts may be distinguished, namely the cam–roller contact and roller–pin contact. The former is a nonconformal contact while the latter is conformal contact. In an earlier work a detailed transient finite line contact elastohydrodynamic lubrication model for the cam–roller contact was developed. In this work a detailed transient elastohydrodynamic lubrication model for the roller–pin contact is developed and coupled to the earlier developed cam–roller contact elastohydrodynamic lubrication model via a roller friction model. For the transient analysis a heavily loaded cam–roller follower unit is analyzed. It is shown that likewise the cam–roller contact, the roller–pin contact also inhibits typical finite line contact elastohydrodynamic lubrication characteristics at high loads. The importance of including elastic deformation for analyzing lubrication conditions in the roller–pin contact is highlighted here, as it significantly enhances the film thickness and friction coefficient. Other main findings are that for heavily loaded cam–roller follower units, as studied in this work, transient effects and roller slippage are negligible, and the roller–pin contact is associated with the highest power losses. Finally, due to the nontypical elastohydrodynamic lubrication characteristics of both cam–roller and roller–pin contact numerical analysis becomes inevitable for the evaluation of the film thicknesses, power losses, and maximum pressures.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Ilya I. Kudish

Heavily loaded point elastohydrodynamically lubricated (EHL) contacts involved in steady purely transitional, skewed transitional, and transitional with spinning motions are considered. It is shown that in the central parts of the inlet and exit zones of such heavily loaded point EHL contacts the asymptotic equations governing the EHL problem along the lubricant flow streamlines for the above types of contact motions can be reduced to two sets of asymptotic equations: one in the inlet and one in the exit zones. The latter sets of equations are identical to the asymptotic equations describing lubrication process in the inlet and exit zones of the corresponding heavily loaded line EHL contact (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC). For each specific motion of a point contact, a separate set of formulas for the lubrication film thickness is obtained. For different types of contact motions, these film thickness formulas differ significantly (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC). For heavily loaded contacts, the discovered relationship between point and line EHL problems allows to apply to point contacts most of the results obtained for line contacts (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC; Kudish, I. I., and Covitch, M. J., 2010, Modeling and Analytical Methods in Tribology, Chapman and Hall/CRC).


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
W. Habchi

Abstract This paper presents a finite element model for the solution of thermal elastohydrodynamic lubrication in finite line contacts, including edge effects. The model is used to investigate the influence of roller-end axial profiling on the frictional behavior of such contacts. Roller-end profiling in finite line contacts has always been used to enhance fatigue life by increasing lubricant minimum film thickness and reducing stress concentration at roller ends. The influence on friction on the other hand has often been overlooked in the literature. The current work reveals that roller-end profiling has a negative effect on friction. In fact, it turns out that the improvement in fatigue life comes at the expense of increased friction.


2017 ◽  
Vol 69 (6) ◽  
pp. 963-969 ◽  
Author(s):  
Zhijian Wang ◽  
Xuejin Shen ◽  
Xiaoyang Chen ◽  
Qiang Han ◽  
Lei Shi

Purpose The purpose of this paper is to study starvation in grease-lubricated finite line contacts and to understand film-forming mechanisms of grease-lubricated finite line contacts. Design/methodology/approach A multiple-contact optical elastohydrodynamic (EHL) test rig is constructed to investigate the influences of lubricant properties on film thickness and lubrication conditions at different working conditions. The film thickness is calculated according to the relative light intensity principle. The degree of starvation is evaluated by the air–oil meniscus distance and the corresponding film thickness. Findings The experimental results show that for greases with high-viscosity base oil, the high-frequency fluctuation of film thickness is observed in low-speed operating conditions. Reducing the viscosity of the base oil and improving running speed can weaken the fluctuation of film thickness. The degree of starvation increases with increasing base oil viscosity, rolling speed and the crown drop. In addition, reducing the replenishment time by reducing the gap between the rollers also can increase the degree of starvation. Originality/value Starvation is often to occur in finite line contacts, such as roller bearings and gears; there are still limited finite line contact EHL test rigs, much less multiple-contact optical test rigs. Therefore, the present work is undertaken to construct the multiple-contact test rig and to evaluate the mechanism of starvation in finite line contacts.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Ning Ren ◽  
Dong Zhu ◽  
Q. Jane Wang

Elastohydrodynamic lubrication (EHL) is one of the most common types of lubrication, which widely exists in many machine elements such as gears, rolling bearings, cams and followers, metal rolling tools, and continuous variable transmissions. These components often transmit substantial power under heavy loading conditions that may possibly induce plastic deformation of contacting surfaces. Moreover, the roughness of machined surfaces is usually of the same order of magnitude as, or greater than, the average EHL film thickness. Consequently, most components operate in mixed lubrication with considerable asperity contacts, which may result in localized pressure peaks much higher than the Hertzian pressure, causing subsurface stress concentrations possibly exceeding the material yield limit. Plastic deformation, therefore, often takes place, which not only permanently changes the surface profiles and contact geometry, but alters material properties through work-hardening as well. Available mixed EHL models, however, do not consider plastic deformation, often yielding unrealistically high pressure spikes and subsurface stresses around asperity contact locations. Recently, a three-dimensional (3D) plasto-elastohydrodynamic lubrication (PEHL) model has been developed for investigating the effects of plastic deformation and material work-hardening on the EHL characteristics and subsurface stress/strain fields. The present paper is a continuation of the previous work done by Ren et al. (2010, “PEHL in point contacts,” ASME J. Tribol., 132(3), pp. 031501) that focused on model development and validation, as well as investigation of fundamental PEHL mechanisms in smooth surface contacts. This part of the study is mainly on the PEHL behavior involving simple surface irregularities, such as a single asperity or dent, which can be considered as basic elements of more complicated surface roughness. It is found that considerable plastic deformation may occur due to the pressure peaks caused by the surface irregularity, even though sometimes external loading is not heavy and the irregularity is concave. The plastic deformation may significantly affect contact and lubrication characteristics, resulting in considerable reductions in peak pressure and maximum subsurface stresses.


Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 58 ◽  
Author(s):  
Andreas Winkler ◽  
Max Marian ◽  
Stephan Tremmel ◽  
Sandro Wartzack

Increasing efforts to reduce frictional losses and the associated use of low-viscosity lubricants lead to machine elements being operated under mixed lubrication. Consequently, wear effects are also gaining relevance. Appropriate numerical modeling and predicting wear in a reliable manner offers new possibilities for identifying harmful operating conditions or for designing running-in procedures. However, most previous investigations focused on simplified model contacts and the wear behavior of application-oriented contacts is relatively underexplored. Therefore, the contribution of this paper was to provide a numerical procedure for studying the wear evolution in the mixed elastohydrodynamically lubricated (EHL) roller/raceway contact by coupling a finite element method (FEM)-based 3D EHL model with surface topography changes following a local Archard-type wear model, a Greenwood–Williamson-based load-sharing approach and the Sugimura surface adaption model. This study applied the operating conditions of an 81212 thrust roller bearing, considering realistic geometry and locally varying velocities. The calculated wear profiles in the raceway featured asymmetries, which were in good agreement with the experimental results reported in the literature and could be correlated with the velocity and slip distribution. In addition, the effects of speed, load and oil viscosity were investigated by means of four load cases and two lubricants, demonstrating the broad range of applying the numerical approach.


2012 ◽  
Vol 538-541 ◽  
pp. 1939-1944
Author(s):  
Yan Fei Wang ◽  
Tong Shu Hua ◽  
Hao Yang Sun

To make further researches into the elastohydrodynamic lubrication properties of a finite line contact roller, oscillating experiments were carried out on made overload experimental rig for oil film measurement using optical interference technique. Film thickness and shape were measured in two kinds of viscosity polyisobutylene. This study indicates that both lubricant viscosity and roller entrainment velocity play an important role on EHL of finite line contacts. On motion, the more increase in viscosity or speed, the thicker the oil film thickness, simultaneity edge effect is distinctly intensified and film thickness increases less on roller end, difference of the film thickness is increased between roller end and the central. Above two parameters are significant for logarithmic profile roller in crowning design.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Haibo Zhang ◽  
Wenzhong Wang ◽  
Shengguang Zhang ◽  
Ziqiang Zhao

Elastohydrodynamic lubrication (EHL) analysis in finite line contacts is usually modeled by a finite-length roller contacting with a half-space, which ignores effect of the two free boundaries existing in many applications such as gears or roller bearings. This paper presents a semi-analytical method, involving the overlapping method and matrix formation, for EHL analysis in the finite line contact problem to consider the effect of two free end surfaces. Three half-spaces with mirrored loads to be solved are overlapped to cancel out the stresses at expected surfaces, and three matrices can be obtained and reused for the same finite-length space. The isothermal Reynolds equation is solved to obtain the pressure distribution and the fast Fourier transform (FFT) is used to speed up the elastic deformation and stress related calculation. Different line contact situations, including straight rollers, tapered rollers, and Lundberg profile rollers, are discussed to explore the effect of free end surfaces.


Sign in / Sign up

Export Citation Format

Share Document