Three-Dimensional Plasto-Elastohydrodynamic Lubrication (PEHL) for Surfaces with Irregularities

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Ning Ren ◽  
Dong Zhu ◽  
Q. Jane Wang

Elastohydrodynamic lubrication (EHL) is one of the most common types of lubrication, which widely exists in many machine elements such as gears, rolling bearings, cams and followers, metal rolling tools, and continuous variable transmissions. These components often transmit substantial power under heavy loading conditions that may possibly induce plastic deformation of contacting surfaces. Moreover, the roughness of machined surfaces is usually of the same order of magnitude as, or greater than, the average EHL film thickness. Consequently, most components operate in mixed lubrication with considerable asperity contacts, which may result in localized pressure peaks much higher than the Hertzian pressure, causing subsurface stress concentrations possibly exceeding the material yield limit. Plastic deformation, therefore, often takes place, which not only permanently changes the surface profiles and contact geometry, but alters material properties through work-hardening as well. Available mixed EHL models, however, do not consider plastic deformation, often yielding unrealistically high pressure spikes and subsurface stresses around asperity contact locations. Recently, a three-dimensional (3D) plasto-elastohydrodynamic lubrication (PEHL) model has been developed for investigating the effects of plastic deformation and material work-hardening on the EHL characteristics and subsurface stress/strain fields. The present paper is a continuation of the previous work done by Ren et al. (2010, “PEHL in point contacts,” ASME J. Tribol., 132(3), pp. 031501) that focused on model development and validation, as well as investigation of fundamental PEHL mechanisms in smooth surface contacts. This part of the study is mainly on the PEHL behavior involving simple surface irregularities, such as a single asperity or dent, which can be considered as basic elements of more complicated surface roughness. It is found that considerable plastic deformation may occur due to the pressure peaks caused by the surface irregularity, even though sometimes external loading is not heavy and the irregularity is concave. The plastic deformation may significantly affect contact and lubrication characteristics, resulting in considerable reductions in peak pressure and maximum subsurface stresses.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Ning Ren ◽  
Dong Zhu ◽  
W. W. Chen ◽  
Q. Jane Wang

Elastohydrodynamic lubrication (EHL) is an important branch of the lubrication theory, describing lubrication mechanisms in nonconformal contacts widely found in many mechanical components such as various gears, rolling bearings, cams and followers, metal-rolling tools, traction drives, and continuous variable transmissions. These components often transmit substantial power under heavy loading conditions. Also, the roughness of machined surfaces is usually of the same order of magnitude as, or greater than, the estimated average EHL film thickness. Consequently, most components operate in mixed lubrication regime with significant asperity contacts. Due to very high pressure concentrated in small areas, resulted from either heavy external loading or severe asperity contacts, or often a combination of both, subsurface stresses may exceed the material yield limit, causing considerable plastic deformation, which may not only permanently change the surface profiles and contact geometry but also alter material properties through work hardening as well. In the present study, a three-dimensional plasto-elastohydrodynamic lubrication (PEHL) model has been developed by taking into account plastic deformation and material work-hardening. The effects of surface/subsurface plastic deformation on lubricant film thickness, surface pressure distribution, and subsurface stress field have been investigated. This paper briefly describes the newly developed PEHL model and presents preliminary results and observed basic behavior of the PEHL in smooth-surface point contacts, in comparison with those from corresponding EHL solutions under the same conditions. The results indicate that plastic deformation may greatly affect contact and lubrication characteristics, resulting in significant reductions in lubricant film thickness, peak surface pressure and maximum subsurface stresses.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tao He ◽  
Ning Ren ◽  
Dong Zhu ◽  
Jiaxu Wang

Efficiency and durability are among the top concerns in mechanical design to minimize environmental impact and conserve natural resources while fulfilling performance requirements. Today mechanical systems are more compact, lightweight, and transmit more power than ever before, which imposes great challenges to designers. Under the circumstances, some simplified analyses may no longer be satisfactory, and in-depth studies on mixed lubrication characteristics, taking into account the effects of 3D surface roughness and possible plastic deformation, are certainly needed. In this paper, the recently developed plasto-elastohydrodynamic lubrication (PEHL) model is employed, and numerous cases with both sinusoidal waviness and real machined roughness are analyzed. It is observed that plastic deformation may occur due to localized high pressure peaks caused by the rough surface asperity contacts, even though the external load is still considerably below the critical load determined at the onset of plastic deformation in the corresponding smooth surface contact. It is also found, based on a series of cases analyzed, that the roughness height, wavelength, material hardening property, and operating conditions may all have significant influences on the PEHL performance, subsurface von Mises stress field, residual stresses, and plastic strains. Generally, the presence of plastic deformation may significantly reduce some of the pressure spikes and peak values of subsurface stresses and make the load support more evenly distributed among all the rough surface asperities in contact.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Tao He ◽  
Dong Zhu ◽  
Jiaxu Wang

Surface plastic deformation due to contact (lubricated or dry) widely exists in many mechanical components, as subsurface stress caused by high-pressure concentrated in the contact zone often exceeds the material yielding limit, and the plastic strain accumulates when the load is increased and/or repeatedly applied to the surface in a rolling contact. However, previous plasto-elastohydrodynamic lubrication (PEHL) studies were mainly for the preliminary case of having a rigid ball (or roller) rotating on a stationary elastic–plastic flat with a fixed contact center, for which the numerical simulation is relatively simple. This paper presents an efficient method for simulating PEHL in a rolling contact. The von Mises yield criteria are used for determining the plastic zone, and the total computation domain is discretized into a number of cuboidal elements underneath the contacting surface, each one is considered as a cuboid with uniform plastic strain inside. The residual stress and surface plastic deformation resulted from the plastic strain can be solved as a half-space eigenstrain–eigenstress problem. A combination of three-dimensional (3D) and two-dimensional (2D) discrete convolution and fast Fourier transform (DC-FFT) techniques is used for accelerating the computation. It is observed that if a rigid ball rolls on an elastic–plastic surface, the characteristics of PEHL lubricant film thickness and pressure distribution are different from those of PEHL in the preliminary cases previously investigated. It is also found that with the increase of rolling cycles, the increment of plastic strain accumulation gradually approaches a stable value or drops down to zero, determined by the applied load and the material hardening properties, eventually causing a groove along the rolling direction. Simulation results for different material hardening properties are also compared to reveal the effect of body materials on the PEHL behaviors.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Tobias Hultqvist ◽  
Aleks Vrcek ◽  
Braham Prakash ◽  
Pär Marklund ◽  
Roland Larsson

In order to adapt to increasingly stringent CO2 regulations, the automotive industry must develop and evaluate low cost, low emission solutions in the powertrain technology. This often implies increased power density and the use of low viscosity oils, leading to additional challenges related to the durability of various machine elements. Therefore, an increased understanding of lubricated contacts becomes important where oil viscosity–pressure and compressibility–pressure behavior have been shown to influence the film thickness and pressure distribution in elastohydrodynamic lubrication (EHL) contacts, further influencing the durability. In this work, a finite line EHL contact is analyzed with focus on the oil compressibility–pressure and viscosity–pressure response, comparing two oils with relatively different behavior and its influence on subsurface stress concentrations in the contacting bodies. Results indicate that increased pressure gradients and pressure spikes, and therefore increased localized stress concentrations, can be expected for stiffer, less compressible oils, which under transient loading conditions not only affect the outlet but also the edges of the roller.


Author(s):  
Qingbing Dong ◽  
Jing Wei ◽  
Yan Li ◽  
Lixin Xu

Abstract Gears of modern industry are required to have a good fatigue performance to transmit power and motion through the contact interfaces. Composite layered surfaces can effectively improve the damage resistance of gears and decrease the friction coefficients. However, improper surface modification may induce intensive stress concentrations at the joint interfaces of the strengthening layers and cause unexpected damages to the flanks. Furthermore, the amount of lubricant at the inlet may probably be insufficient to establish fully flooded condition, which may result in starvation and accelerate damages to the gear sets. In this study, a starved elastohydrodynamic lubrication (EHL) model in three-dimensional (3D) line contact for layered gears is developed. The potential energy method is employed to determine the load distribution along the action line. The loading force is assumed to be balanced by the lubrication pressure, which is derived by discretizing the dimensional Reynolds equation into a solvable matrix with the consideration of the enforced boundary conditions due to the inlet oil supply. The transient evolution of lubrication is investigated to evaluate the load-carrying capability of the lubricant film at various starvation conditions. The influence coefficients related to the displacements and stresses of the layered material system are determined with the assistance of the fast Fourier transform (FFT) algorithm, and the effects of the layer properties and the fabrication methods are evaluated. Such analysis may provide insightful information for the optimization of material systems with fabricated layers and engineering design of gears.


1994 ◽  
Vol 116 (1) ◽  
pp. 21-28 ◽  
Author(s):  
L. Chang ◽  
M. N. Webster ◽  
A. Jackson

A mathematical model is presented in this paper that can be used to analyze the effect of 3-D surface topography on the thermal, transient micro-elastohydrodynamic lubrication (EHL). The model efficiently incorporates the surface deformation due to the 3D pressure rippling and the lubricant side flow around the asperities. The resulting computer implementation requires little additional storage space and does not reduce computational efficiency from its 2-D counterpart. The model is shown to sensibly describe the physical problems. The results presented in this paper and in a separate paper (Chang et al., 1993c) show that the lubricant local side flow significantly affects the contact conditions of the EHL of rough surfaces, especially under high sliding. The work reported thus far represents the authors’ continuing effort to develop an analytical/computational model for tribo-systems operating in the micro-EHL/mixed-lubrication regime. Work in the future will model and integrate the asperity contact mechanics and lubricant-surface tribo-chemistry in the micro-EHL environment.


Author(s):  
J. Temple Black

There are two types of edge defects common to glass knives as typically prepared for microtomy purposes: 1) striations and 2) edge chipping. The former is a function of the free breaking process while edge chipping results from usage or bumping of the edge. Because glass has no well defined planes in its structure, it should be highly resistant to plastic deformation of any sort, including tensile loading. In practice, prevention of microscopic surface flaws is impossible. The surface flaws produce stress concentrations so that tensile strengths in glass are typically 10-20 kpsi and vary only slightly with composition. If glass can be kept in compression, wherein failure is literally unknown (1), it will remain intact for long periods of time. Forces acting on the tool in microtomy produce a resultant force that acts to keep the edge in compression.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2020 ◽  
pp. 252-255
Author(s):  
V.I. Bolobov ◽  
V.S. Bochkov ◽  
E.V. Akhmerov ◽  
V.A. Plashchinsky ◽  
E.A. Krivokrisenko E.A.

On the example of Hadfield steel, as the most common material of fast-wearing parts of mining equipment, the effect of surface hardening by plastic deformation on their impact and abrasive wear resistance is considered. Wear test is conducted on magnetic ironstone as typical representative of abrasive and hard rock. As result of wear of initial samples with hardness of ∼200 HB and samples pre-hardened with different intensities to the hardness of 300, 337 and 368 HB, it is found that during the initial testing period, the initial samples pass the “self-cold-work hardening” stage with increase in hardness to ∼250 HB, which remains virtually unchanged during further tests; the hardness of the pre-hardened samples does not change significantly throughout the tests. It is established that the rate of impact-abrasive wear of pre-hardened samples is significantly (up to 1.4 times) lower than the original ones that are not subjected to plastic deformation, and decreases with increasing degree of cold-work hardening. Preliminary surface hardening by plastic deformation can serve as effective way to increase the service life of fast-wearing working parts of mining equipment.


2007 ◽  
Vol 345-346 ◽  
pp. 45-48 ◽  
Author(s):  
Jozef Zrník ◽  
Sergey V. Dobatkin ◽  
Ondrej Stejskal

The article focuses on the results from recent experimental of severe plastic deformation of low carbon (LC) steel and medium carbon (MC) steel performed at increased temperatures. The grain refinement of ferrite respectively ferrite-pearlite structure is described. While LC steel was deformed by ECAP die (ε = 3) with a channel angle φ = 90° the ECAP severe deformation of MC steel was conducted with die channel angle of 120° (ε = 2.6 - 4). The high straining in LC steel resulted in extensively elongated ferrite grains with dense dislocation network and randomly recovered and polygonized structure was observed. The small period of work hardening appeared at tensile deformation. On the other side, the warm ECAP deformation of MC steel in dependence of increased effective strain resulted in more progressive recovery process. In interior of the elongated ferrite grains the subgrain structure prevails with dislocation network. As straining increases the dynamic polygonization and recrystallization became active to form mixture of polygonized subgrain and submicrocrystalline structure. The straining and moderate ECAP temperature caused the cementite lamellae fragmentation and spheroidzation as number of passes increased. The tensile behaviour of the both steels was characterized by strength increase however the absence of strain hardening was found at low carbon steel. The favourable effect of ferrite-pearlite structure modification due straining was reason for extended work hardening period observed at MC steel.


Sign in / Sign up

Export Citation Format

Share Document