Modeling and Analysis of Piezoelectric Energy Harvesting With Dynamic Plucking Mechanism

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Xinlei Fu ◽  
Wei-Hsin Liao

Nonharmonic excitations are widely distributed in the environment. They can work as energy sources of vibration energy harvesters for powering wireless electronics. To overcome the narrow bandwidth of linear vibration energy harvesters, plucking piezoelectric energy harvesters have been designed. Plucking piezoelectric energy harvesters can convert sporadic motions into plucking force to excite vibration energy harvesters and achieve broadband performances. Though different kinds of plucking piezoelectric energy harvesters have been designed, the plucking mechanism is not well understood. The simplified models of plucking piezoelectric energy harvesting neglect the dynamic interaction between the plectrum and the piezoelectric beam. This research work is aimed at investigating the plucking mechanism and developing a comprehensive model of plucking piezoelectric energy harvesting. In this paper, the dynamic plucking mechanism is investigated and the Hertzian contact theory is applied. The developed model of plucking piezoelectric energy harvesting accounts for the dynamic interaction between the plectrum and the piezoelectric beam by considering contact theory. Experimental results show that the developed model well predicts the responses of plucking piezoelectric energy harvesters under different plucking velocities and overlap lengths. Parametric studies are conducted on the dimensionless model after choosing appropriate scaling. The influences of plucking velocity and overlap length on energy harvesting performance and energy conversion efficiency are discussed. The comprehensive model helps investigate the characteristics and guide the design of plucking piezoelectric energy harvesters.

2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


2020 ◽  
Vol 31 (15) ◽  
pp. 1751-1762
Author(s):  
Yangyang Zhang ◽  
He Zhang ◽  
Chaofeng Lü ◽  
Yisheng Chen ◽  
Ji Wang

Many laboratory tests and in situ measurements have been conducted to study piezoelectric energy harvesting from roadway deformation. However, the performance of piezoelectric energy harvesters under real traffic flow conditions is still unknown. In this study, an electromechanical model of piezoelectric energy harvesters with detailed parameters (including the geometric parameters, material parameters, and circuits) is established, and the influences of traffic flow conditions (i.e. traffic speed and traffic density) on the output power of piezoelectric energy harvesters are analyzed by employing a scaling law method and traffic flow theory. The results indicate that remarkable differences exist in the load patterns and the frequencies between the laboratory tests (or in situ measurements) and real traffic flow conditions. Because of these differences, the results (especially the output electric power and optimization design methods) of previous studies may be inapplicable for piezoelectric energy harvesters embedded in roadways. Considering the distinguishing features of the traffic load pattern, the optimization criteria to determine the geometric parameters and the intrinsic system parameter of piezoelectric energy harvesters are obtained, and the corresponding optimal output power densities of the piezoelectric energy harvesters are also quantitatively calibrated. These theoretical results may serve as guidelines for optimizing the design of piezoelectric energy harvesters embedded in roadways under different traffic flow conditions.


Author(s):  
M. H. Ansari ◽  
M. Amin Karami

A three dimensional piezoelectric vibration energy harvester is designed to generate electricity from heartbeat vibrations. The device consists of several bimorph piezoelectric beams stacked on top of each other. These horizontal bimorph beams are connected to each other by rigid vertical beams making a fan-folded geometry. One end of the design is clamped and the other end is free. One major problem in micro-scale piezoelectric energy harvesters is their high natural frequency. The same challenge is faced in development of a compact vibration energy harvester for the low frequency heartbeat vibrations. One way to decrease the natural frequency is to increase the length of the bimorph beam. This approach is not usually practical due to size limitations. By utilizing the fan-folded geometry, the natural frequency is decreased while the size constraints are observed. The required size limit of the energy harvester is 1 cm by 1 cm by 1 cm. In this paper, the natural frequencies and mode shapes of fan-folded energy harvesters are analytically derived. The electro-mechanical coupling has been included in the model for the piezoelectric beam. The design criteria for the device are discussed.


Nanoscale ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 7214-7230 ◽  
Author(s):  
Suman Kumar Si ◽  
Sarbaranjan Paria ◽  
Sumanta Kumar Karan ◽  
Suparna Ojha ◽  
Amit Kumar Das ◽  
...  

The unique combination of piezoelectric energy harvesters and light detectors progressively strengthens their application in the development of modern electronics.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3516 ◽  
Author(s):  
He ◽  
Wang ◽  
Zhong ◽  
Guan

This paper proposes a novel energy harvesting floor structure using piezoelectric elements for converting energy from human steps into electricity. The piezoelectric energy harvesting structure was constructed by a force amplification mechanism and a double-layer squeezing structure in which piezoelectric beams were deployed. The generated electrical voltage and output power were investigated in practical conditions under different strokes and step frequencies. The maximum peak-to-peak voltage was found to be 51.2 V at a stroke of 5 mm and a step frequency of 1.81 Hz. In addition, the corresponding output power for a single piezoelectric beam was tested to be 134.2 μW, demonstrating the potential of harvesting energy from the pedestrians for powering low-power electronic devices.


2018 ◽  
Vol 30 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Mohammad Reza Zamani Kouhpanji

This study represents effects of an elastic support on the power generation and storage capability of piezoelectric energy harvesting devices. The governing equations were derived and solved for a piezoelectric energy harvesting device made of elastic support, multilayer piezoelectric beam, and a proof mass at its free end. Furthermore, a Thevenin model for a rechargeable battery was considered for storage of the produced power of the piezoelectric energy harvesting device. Analyzing the time-domain and frequency-domain responses of the piezoelectric energy harvesting device on an elastic support shows that the elastic deformation of the support significantly reduces the power generation and storage capability of the device. It was also found that the power generation and storage capability of the piezoelectric energy harvesting device can be enhanced by choosing appropriate physical parameters of the piezoelectric beam even if the elastic properties of the support are poor relative to elastic properties of the piezoelectric beam. These results provide an insightful understanding for designing and material selection for the support in order to reach the highest possible power generation and storage capability for piezoelectric energy harvesting devices.


2012 ◽  
Vol 433-440 ◽  
pp. 5848-5853 ◽  
Author(s):  
E. Bischur ◽  
N. Schwesinger

The design, fabrication and testing of piezoelectric energy harvesting modules for floors is described. These modules are used beneath a parquet floor to harvest the energy of people walking over it. The harvesting modules consist of monoaxial stretched PVDF-foils. Multilayer modules are built up as roller-type capacitors. The fabrication process of the harvesting modules is simple and very suitable for mass production. Due to the use of organic polymers, the modules are characterized by a great flexibility and the possibility to create them in almost any geometrical size. The energy yield was determined depending on the dynamic loading force, the thickness of piezoelectric active material, the size of the piezoelectric modules, their alignment in the walking direction and their position on the floor. It was possible to generate up to 2.1mWs per pulse with loads of about 70 kg using a specific module design. An increase of the energy yield at higher loading forces and higher thicknesses of the modules is possible in general. Furthermore a test floor was assembled to determine the influence of the size, alignment and position of the modules on the energy yield.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Chin An Tan ◽  
Shahram Amoozegar ◽  
Heather L. Lai

This paper presents a novel formulation and exact solution of the frequency response function (FRF) of vibration energy harvesting beam systems by the distributed transfer function method (TFM). The method is applicable for coupled electromechanical systems with nonproportional damping, intermediate constraints, and nonclassical boundary conditions, for which the system transfer functions are either very difficult or cumbersome to obtain using available methods. Such systems may offer new opportunities for optimized designs of energy harvesters via parameter tuning. The proposed formulation is also systematic and amenable to algorithmic numerical coding, allowing the system response and its derivatives to be computed by only simple modifications of the parameters in the system operators for different boundary conditions and the incorporation of feedback control principles. Examples of piezoelectric energy harvesters with nonclassical boundary conditions and intermediate constraints are presented to demonstrate the efficacy of the proposed method and its use as a design tool for vibration energy harvesters via tuning of system parameters. The results can also be used to provide benchmarks for assessing the accuracies of approximate techniques.


2019 ◽  
Vol 827 ◽  
pp. 324-329
Author(s):  
Zdeněk Majer ◽  
Oldřich Ševeček ◽  
Kateřina Štegnerová ◽  
Ondřej Rubeš ◽  
Pavel Tofel ◽  
...  

The paper deals with an analysis of maximal operation amplitudes of piezoelectric energy harvesting systems generating electrical energy from ambient vibrations. Energy harvesting systems could be very interesting alternative for autonomous powering of ultra-low power electronics, sensors and wireless communication. A design of piezoelectric vibration energy harvester is based on the cantilever beam design with active piezoelectric layers. The output power is proportional to an amplitude of relative oscillation of this resonance mechanism. This paper presents an analysis based on the simulation model of multidisciplinary piezoelectric energy harvesting device, enabling an optimization of its key parameters ensuring a maximal efficiency of the system. Such analysis is also essential for development of new energy harvesting systems formed of new smart materials and structures which could be integrated in future development processes.


Author(s):  
Byeng Dong Youn ◽  
Heonjun Yoon ◽  
Hongjin Kim ◽  
Byung Chang Jung ◽  
Chulmin Cho ◽  
...  

Energy harvesting (EH) which scavenges electric power from ambient, otherwise wasted, energy sources has been explored to develop self-powered portable electronic devices. Vibration energy, a widely available ambient energy source, can be converted into electric power using a piezoelectric energy harvester that generates electric potential in response to applied mechanical strains. As a compact and durable design paradigm, a piezoelectric energy harvesting skin (PEH skin) which can be directly attached onto the surface of a vibrating engineered system has been proposed to scavenge electric power from vibration energy. The goal of this chapter is to describe the core technologies for the realization of the PEH skin from a system integration perspective as four parts: (a) modeling, (b) design, (c) manufacturing, and (d) demonstration. The readers will be able to learn the entire procedure of developing the PEH skin and applying it to self-powered wireless sensor network (WSN) through this chapter.


Sign in / Sign up

Export Citation Format

Share Document