A New 4-DOF Fully Parallel Robot With Decoupled Rotation for Five-Axis Micromachining Applications

2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Oleksandr Stepanenko ◽  
Ilian A. Bonev ◽  
Dimiter Zlatanov

We present a novel 4-DOF (degrees of freedom) parallel robot designed for five-axis micromachining applications. Two of its five telescoping legs operate simultaneously, thus acting as an extensible parallelogram linkage, and in conjunction with two other legs control the position of the tooltip. The fifth leg controls the tilt of the end-effector (a spindle), while a turntable fixed at the base of the robot controls the swivel of the workpiece. The robot is capable of tilting its end-effector up to 90 deg, for any tooltip position. In this paper, we study the mobility of the new parallel kinematic machine (PKM), describe its inverse and direct kinematic models, then study its singularities, and analyze its workspace. Finally, we propose a potential mechanical design for this PKM utilizing telescopic actuators as well as the procedure for optimizing it. In addition, we discuss the possibility of using constant-length legs and base-mounted linear actuators in order to increase the volume of the workspace.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinjun Sheng ◽  
Zhao Ma ◽  
Ningbin Zhang ◽  
Wei Dong

Abstract This paper presents the development of a six degrees-of-freedom manipulator with soft end-effector and an inverse kinematic compensator for aerial contact manipulation. Realizing the fact that aerial manipulators can hardly achieve precise position control, a compliant manipulator with soft end-effector is first developed to moderate end-effector positioning errors. The manipulator is designed to be rigid-soft combined. The rigid robotic arm employs the lightweight but high-strength materials. The compliance requirement is achieved by the soft end-effector so that the mechanical design for the joints are largely simplified. These two features are beneficial to lighten the arm and to ensure the accuracy. In the meantime, the pneumatic soft end-effector can further moderate the probable insufficient accuracy by endowing the manipulator with compliance for impact resistance and robustness to positioning errors. With the well-designed manipulator, an inverse kinematic compensator is then proposed to eliminate lumped disturbances from the aerial platform. The compensator can ensure the stabilization of the end-effector by using state estimation from the aerial platform, which is robust and portable as the movement of the platform can be reliably obtained. Both the accuracy and compliance have been well demonstrated after being integrated into a hexarotor platform, and a representative scenario aerial task repairing the wind turbine blade-coating was completed successfully, showing the potential to accomplish complex aerial manipulation tasks.


Robotica ◽  
2013 ◽  
Vol 31 (6) ◽  
pp. 887-904 ◽  
Author(s):  
M. H. Korayem ◽  
M. Bamdad ◽  
H. Tourajizadeh ◽  
A. H. Korayem ◽  
R. M. Zehtab ◽  
...  

SUMMARYIn this paper, design, dynamic, and control of the motors of a spatial cable robot are presented considering flexibility of the joints. End-effector control in order to control all six spatial degrees of freedom (DOFs) of the system and motor control in order to control the joints flexibility are proposed here. Corresponding programing of its operation is done by formulating the kinematics and dynamics and also control of the robot. Considering the existence of gearboxes, flexibility of the joints is modeled in the feed-forward term of its controller to achieve better accuracy. A two sequential closed-loop strategy consisting of proportional derivative (PD) for linear actuators in joint space and computed torque method for nonlinear end-effector in Cartesian space is presented for further accuracy. Flexibility is estimated using modeling and simulation by MATLAB and SimDesigner. A prototype has been built and experimental tests have been done to verify the efficiency of the proposed modeling and controller as well as the effect of flexibility of the joints. The ICaSbot (IUST Cable-Suspended robot) is an under-constrained six-DOF parallel robot actuated by the aid of six suspended cables. An experimental test is conducted for the manufactured flexible joint cable robot of ICaSbot and the outputs of sensors are compared with simulation. The efficiency of the proposed schemes is demonstrated.


Author(s):  
Se´bastien Krut ◽  
Nacim Ramdani ◽  
Marc Gouttefarde ◽  
Olivier Company ◽  
Franc¸ois Pierrot

This paper introduces a lower mobility parallel kinematic crane able to generate Scara motions (three translations and one rotation about a vertical axis). A crane is an underconstrained cable robot: it requires gravity acting on the traveling plate in order to tense the cables. The proposed crane can resist, to a certain extent, against outside forces and torques in all directions of the 6-dimensional task space. This feature results from the use of pairs of cables linking the actuators and the traveling plate. The proposed crane is derived from the I4 parallel robot. Thus, its traveling plate is articulated which provides a wide range of orientation. It is hyperstatic in the sense that one of the eight cables can be removed while keeping the same kinematic relationships. However, for symmetry reasons all the eight cables are kept (this feature is interesting in case of a cable breakdown). The input/output geometrical and kinematic models required for control are derived. Then, the cables tensions are obtained enabling the determination of the static workspace defined as the domain of reachable space where the cables remain taut under the action of gravity.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Sen Qian ◽  
Kunlong Bao ◽  
Bin Zi ◽  
W. D. Zhu

Abstract This paper presents a new trajectory planning method based on the improved quintic B-splines curves for a three degrees-of-freedom (3-DOF) cable-driven parallel robot (CDPR). First, the conditions of positive cables’ tension are expressed in terms of the position and acceleration constraints of the end-effector. Then, an improved B-spline curve is introduced, which is employed for generating a pick-and-place path by interpolating a set of given via-points. Meanwhile, by expressing the position and acceleration of the end-effector in terms of the first and second derivatives of the improved B-spline, the cable tension constraints are described in the form of B-spline parameters. According to the properties of the defined pick-and-place path, the proposed motion profile is dominated by two factors: the time taken for the end-effector to pass through all the via-points and the ratio between the nodes of B-spline. The two factors are determined through multi-objective optimization based on the efficiency coefficient method. Finally, experimental results on a 3-DOF CDPR show that the improved B-spline exhibits overall superior behavior in terms of velocity, acceleration, and cables force compared with the traditional B-spline. The validity of the proposed trajectory planning method is proved through the experiments.


Author(s):  
Saeed Behzadipour ◽  
Robert Dekker ◽  
Amir Khajepour ◽  
Edmon Chan

The growing needs for high speed positioning devices in the automated manufacturing industry have been challenged by robotic science for more than two decades. Parallel manipulators have been widely used for this purpose due to their advantage of lower moving inertia over the conventional serial manipulators. Cable actuated parallel robots were introduced in 1980’s to reduce the moving inertia even further. In this work, a new cable-based parallel robot is introduced. For this robot, the cables are used not only to actuate the end-effector but also to apply the necessary kinematic constraints to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a passive air cylinder is used to push the end-effector against the stationary platform. In addition to low moving inertia, the new design benefits from simplicity and low manufacturing cost by eliminating joints from the robot’s mechanism. The design procedure and the results of experiments will be discussed in the following.


Author(s):  
Xuan Luo ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Jie Li

5-Degree-of-freedom parallel kinematic machine tools are always attractive in manufacturing industry due to the ability of five-axis machining with high stiffness/mass ratio and flexibility. In this article, error modeling and sensitivity analysis of a novel 5-degree-of-freedom parallel kinematic machine tool are discussed for its accuracy issues. An error modeling method based on screw theory is applied to each limb, and then the error model of the parallel kinematic machine tool is established and the error mapping Jacobian matrix of 53 geometric errors is derived. Considering that geometric errors exert both impacts on value and direction of the end-effector’s pose error, a set of sensitivity indices and an easy routine for sensitivity analysis are proposed according to the error mapping Jacobian matrix. On this basis, 10 vital errors and 10 trivial errors are identified over the prescribed workspace. To validate the effects of sensitivity analysis, several numerical simulations of accuracy design are conducted, and three-dimensional model assemblies with relevant geometric errors are established as well. The simulations exhibit maximal −0.10% and 0.34% improvements of the position and orientation errors, respectively, after modifying 10 trivial errors, while minimal 65.56% and 55.17% improvements of the position and orientation errors, respectively, after modifying 10 vital errors. Besides the assembly reveals an output pose error of (0.0134 mm, 0.0020 rad) with only trivial errors, while (2.0338 mm, 0.0048 rad) with only vital errors. In consequence, both results of simulations and assemblies validate the correctness of the sensitivity analysis. Moreover, this procedure can be extended to any other parallel kinematic mechanisms easily.


Robotica ◽  
2012 ◽  
Vol 31 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Yongjie Zhao

SUMMARYPerformance evaluation of a parallel robot is a multicriteria problem. By taking Delta robot as an object of study, this paper presents the kinematic performance evaluation of a three translational degrees-of-freedom parallel robot from the viewpoint of singularity, isotropy, and velocity transmission. It is shown that the determinant of a Jacobian matrix cannot measure the distance from the singular configuration due to the existing inverse kinematic singularity of a Delta robot. The determinants of inverse and direct kinematic Jacobian matrices are adopted for the measurement of distance from the singular configuration based on the theory of numerical linear dependence. The denominator of the Jacobian matrix will be lost in the computation of the condition number when the end-effector is on the centerline of the workspace, so the Delta robot may also be nearly at a singular configuration when the condition number of the Jacobian matrix is equal to 1. The velocity transmission index whose physical meaning is the maximum input angular velocity when the end-effector translates in the unit velocity is presented. The evaluation of singularity, isotropy, and velocity transmission of a Delta robot is investigated by simulation. The velocity transmission index can also be used for the velocity transmission evaluation of a parallel robot with pure rotational degrees-of-freedom based on the principle of similarity. The physical meaning is modified to be the maximum input velocity when the end-effector rotates in the unit angular velocity.


2020 ◽  
Vol 12 (14) ◽  
pp. 5803 ◽  
Author(s):  
Carlos Llopis-Albert ◽  
Francisco Valero ◽  
Vicente Mata ◽  
José L. Pulloquinga ◽  
Pau Zamora-Ortiz ◽  
...  

This paper presents an efficient algorithm for the reconfiguration of a parallel kinematic manipulator with four degrees of freedom. The reconfiguration of the parallel manipulator is posed as a nonlinear optimization problem where the design variables correspond to the anchoring points of the limbs of the robot on the fixed platform. The penalty function minimizes the forces applied by the actuators during a specific trajectory. Some constraints are imposed to avoid forward singularities and guarantee the feasibility of the active generalized coordinates for a certain trajectory. The results are compared with different optimization approaches with the aim of avoiding getting trapped into a local minimum and undergoing forward singularities. The comparison covers evolutionary algorithms, heuristics optimizers, multistrategy algorithms, and gradient-based optimizers. The proposed methodology has been successfully tested on an actual parallel robot for different trajectories.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 68 ◽  
Author(s):  
Moritz Schappler ◽  
Svenja Tappe ◽  
Tobias Ortmaier

Industrial manipulators and parallel robots are often used for tasks, such as drilling or milling, that require three translational, but only two rotational degrees of freedom (“3T2R”). While kinematic models for specific mechanisms for these tasks exist, a general kinematic model for parallel robots is still missing. This paper presents the definition of the rotational component of kinematic constraints equations for parallel robots based on two reciprocal sets of Euler angles for the end-effector orientation and the orientation residual. The method allows completely removing the redundant coordinate in 3T2R tasks and to solve the inverse kinematics for general serial and parallel robots with the gradient descent algorithm. The functional redundancy of robots with full mobility is exploited using nullspace projection.


Sign in / Sign up

Export Citation Format

Share Document