Finite Element Analysis of Flexible Pipes Under Compression: Influence of the Friction Coefficient

Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the compressive behavior of flexible pipes, a nonlinear finite element model was developed. This fully tridimensional model recreates a five-layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape, and a rigid inner nucleus. The friction coefficient is known as a key parameter in determining the instability response of flexible pipes’ tensile armor. Since the featured model includes all nonlinear frictional contacts between the layers, it has been used to conduct several experiments in order to investigate its influence on the response. This article includes a description of the finite element model itself and a case study where the friction between the layers of the pipe is changed. The procedure of this analysis is described here, along with the results.

Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the compressive behavior of flexible pipes, a nonlinear Finite Element model was developed. This fully tridimensional model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape and a rigid inner nucleus. The friction coefficient is known as a key parameter in determining the instability response of flexible pipes tensile armor. Since the featured model includes all nonlinear frictional contacts between the layers, it has been used to conduct several experiments in order to investigate its influence on the response. This article includes a description of the Finite Element Model itself and a case study where the friction between the layers of the pipe is changed. The procedure of this analysis is here described, along with the results.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the compressive behavior of flexible pipes, a nonlinear tridimensional finite element model was developed. This model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape and a rigid inner nucleus. Using this model, several studies are being conducted to verify the influence of key parameters on the wire instability phenomenon. The pipe sample length can be considered one of these parameters and its variation causes significant change at the stability response of the tensile layers. This article includes a detailed description of the finite element model itself and a case study where the length of the pipe is changed. The procedure of this analysis is here described, along with the results.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

Axial compressive loads can appear in several situations during the service life of a flexible pipe, due to pressure variations during installation or due to surface vessel heave. The tensile armor withstands well tension loads, but under compression, instability may occur. A Finite Element model is constructed using Abaqus in order to study a flexible pipe compound by external sheath, two layers of tensile armor, a high strength tape and a rigid nucleus. This model is fully tridimensional and takes into account all kinds of nonlinearities involved in this phenomenon, including contacts, gaps, friction, plasticity and large displacements. It also has no symmetry or periodical limitations, thus permitting each individual wire of the tensile armor do displace in any direction. Case studies were performed and their results discussed.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the axial compressive behavior of flexible pipes, a nonlinear tridimensional finite element model was developed. This model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape, and a rigid inner core. Using this model, several studies were conducted to verify the influence of key parameters on the wire instability phenomenon. The pipe sample length can be considered as one of these parameters. This paper includes a detailed description of the finite element model itself and a case study where the length of the pipe is varied. The procedure of this analysis is here described and a case study is presented which shows that the sample length itself has no practical effect on the prebuckling response of the samples and a small effect on the limit force value. The postbuckling response, however, presented high sensitivity to the changes, but its erratic behavior has made impossible to establish a pattern.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Qi Guo ◽  
Qing-wei Chen ◽  
Ying Xing ◽  
Ya-ning Xu ◽  
Yi Zhu

Prefabrication of composites beam reduces the construction time and makes them easily to be assembled, deconstructed, and partially repaired. The use of high-strength frictional bolt shear connectors can greatly enhance the sustainability of infrastructure. However, researches about the concrete-steel friction behavior are very limited. To provide a contribution to this area, 21 tests were conducted to measure the friction coefficient and slip stiffness with different concrete strength, steel strength, and surface treatment of steel. An effective finite element model was developed to investigate the ultimate bearing capacity and load-slip characteristics of bolt shear connection. The accuracy of the proposed finite element model is validated by the tests in this paper. The results demonstrate a positive correlation between concrete strength and friction coefficient and better performance of shot-blasted steel. It is also proved that high-strength frictional bolt has a 30% lower bearing capacity but better strength reserve and antiuplifting than the headed stud.


2014 ◽  
Vol 621 ◽  
pp. 195-201
Author(s):  
Surangsee Dechjarern ◽  
Maitri Kamonrattanapisut

Sheet metal deep-draw die is primarily constructed with draw bead, which is then modified based on trial and error to obtain a successful forming without splitting. This work aims at a robust design of forming die using numerical analysis and the Taguchi method. A three dimensional elastoplastic finite element model of a sheet metal forming process of SPCEN steel has been successfully developed using the material flow stress obtained from the modified Erichsen cup test. The model was validated with the actual forming experiment and the results agreed well. The influence of draw bead parameters on splitting and thinning distributions were examined using the Taguchi method. Four parameters, namely the friction coefficient, draw bead height, radius and shoulder radius were investigated. The Taguchi main effect analysis and ANOVA results show that the height and shoulder radius of the draw bead are the most important factor influencing the thinning distribution. Applying the Taguchi method and using the minimum thinning percentage as the design criteria, the optimum die design was identified as height, radius, shoulder radius and the friction coefficient of 4, 8, 8 mm and 0.125 respectively. The verified finite element model using the optimum die design was conducted. The predicted Taguchi response was within 5.9% from finite element analysis prediction. The improvement in the reduction of thinning percentage was 22.35%.


Author(s):  
Olaf O. Otte Filho ◽  
Rafael L. Tanaka ◽  
Rafael G. Morini ◽  
Rafael N. Torres ◽  
Thamise S. V. Vilela

In the design of flexible pipes, predict the anchoring behavior on end fittings is always challenging. In this sense, Prysmian Surflex has developed a finite element model, which should help the end fitting design as well the prediction of the structural behavior and the acceptable maximum loads. The current model considers that the contact between armor-resin is purely cohesive and has been suitable for the design of end fittings [1] and [2]. But tests and new studies [3] and [4] indicate that only cohesive assumption would not be the best approach. Experimental data from prototype tests also show that the current model would not predict acceptable results for loads higher than those used in previous projects. This document will describe a study developed considering the friction and thermal contraction, instead of the cohesive phenomenon in the anchoring behavior analysis. Small scale tests were conducted in order to understand the anchoring relation between the resin and the wire used in the tensile armor. For this purpose, a special test device was developed to simulate an enclosure system. A parametric study was also performed to identify the cooling temperatures, coefficients of friction and contact properties parameters taken from small scale tests. The finite element model considers the thermal effects during exothermic curing. Using the new parameters obtained, a second model was developed. This model consists of only one real shaped bended wire inside an end fitting cavity. To validate the model, samples were tested on laboratory according anchoring design. The results of this round of tests were studied and corroborate the argument that use friction and thermal effects is better than use only the cohesive condition.


Author(s):  
Yutian Lu ◽  
Huibin Yan ◽  
Yong Bai ◽  
Peng Cheng

The bending behavior of unbonded flexible pipe is governed by the response of the helical wires in the tensile armor to bending. The behavior of the helical wire, especially the axial strain, is influenced by the slip mechanism as a result of an increasing curvature under bending. In the present paper, two limit curves are considered with a certain curvature. A 3-D finite element model using ABAQUS is developed to simulate the practical behavior of the helical wires under bending. By comparing the FEA and theoretical results, a basic conclusion about the real slip path of the helical wire between two limit curves is introduced. A hysteretic bending moment-curvature relationship induced by the slip mechanism is obtained from the finite element model as well.


2012 ◽  
Vol 204-208 ◽  
pp. 1194-1199 ◽  
Author(s):  
Chao Fei Wang ◽  
Wei Rong Lv ◽  
Wen Luo

Effective simulation and analysis about wind turbine foundation simplified model experiment were conducted by using general finite element analysis (FEA) program ANSYS. Nonlinear finite element model with surface-to-surface contact pair was built to study the strain distribution of the steel interface and slip between steel and concrete. Relevant strain and spreading length curves under the load of every class were obtained. The numerical simulation results were in good agreement with the experimental results. And proper parameters of bond-slip relationship for steel and concrete in wind turbine foundation were confirmed. The finite element model established and analysis results can provide a theoretical reference for later research, and have significant value for optimal design of wind turbine foundation.


2020 ◽  
Vol 62 (12) ◽  
pp. 1215-1220
Author(s):  
Ahmet Atak

Abstract To reduce the fuel consumption and enhance the flight performance of satellites, it is desirable to employ structural components of low weight, high strength, and high stiffness. Therefore, most primary and secondary structures of satellites are built using sandwich panels. Fasteners, which constitute secondary structures, are normally used as joining parts in different types of inserts such as partially potted, fully potted, and through-thickness inserts. Finite element analysis (FEA) is valuable for predicting the behavior of such primary and secondary structures. However, to obtain more realistic results from such analysis, it is necessary to define suitable fastener stiffness values. To this end, in this study, a method for calculating the fastener stiffness of a fully potted insert for sandwich panels using a finite element model is exemplarily developed and experimentally validated. In addition, a shell modeling is established for various connection types to further save time and reduce the computational cost of the finite element model. Finally, the effects of the fastener stiffness on the numerical analysis results for satellite structural system are evaluated. The two-dimensional (2D) structure modeling method used in this study was found to be as fully sufficient as three-dimensional modeling. In addition to saving time and cost, 2D FEA numerical modeling and prediction could reduce elaborate test costs.


Sign in / Sign up

Export Citation Format

Share Document