Experimental determination and numerical modeling of the stiffness of a fastener

2020 ◽  
Vol 62 (12) ◽  
pp. 1215-1220
Author(s):  
Ahmet Atak

Abstract To reduce the fuel consumption and enhance the flight performance of satellites, it is desirable to employ structural components of low weight, high strength, and high stiffness. Therefore, most primary and secondary structures of satellites are built using sandwich panels. Fasteners, which constitute secondary structures, are normally used as joining parts in different types of inserts such as partially potted, fully potted, and through-thickness inserts. Finite element analysis (FEA) is valuable for predicting the behavior of such primary and secondary structures. However, to obtain more realistic results from such analysis, it is necessary to define suitable fastener stiffness values. To this end, in this study, a method for calculating the fastener stiffness of a fully potted insert for sandwich panels using a finite element model is exemplarily developed and experimentally validated. In addition, a shell modeling is established for various connection types to further save time and reduce the computational cost of the finite element model. Finally, the effects of the fastener stiffness on the numerical analysis results for satellite structural system are evaluated. The two-dimensional (2D) structure modeling method used in this study was found to be as fully sufficient as three-dimensional modeling. In addition to saving time and cost, 2D FEA numerical modeling and prediction could reduce elaborate test costs.

2012 ◽  
Vol 14 (6) ◽  
pp. 715-733
Author(s):  
Karamat Malekzadeh Fard ◽  
Alireza Sayyidmousavi ◽  
Zouheir Fawaz ◽  
Habiba Bougherara

In this article, a three-dimensional finite element model is proposed to study the effect of distributed attached mass with thickness and stiffness on the buckling instability of sandwich panels with transversely flexible cores. Unlike the previous works in the literature which have made use of unified displacement theories, the present model uses different types of finite elements to model the core and the face sheets. It utilizes shell elements for the face sheets and three-dimensional solid elements for the core which enables the model to account for the transverse flexibility of the structure. The motions of the face sheets and the core as well as the attached mass are related through defining constraint equations between the nodes of their respective finite elements based on the concept of master and slave nodes which is incorporated into the finite element analysis program ANSYS through a user-defined subroutine. The validated finite element model is then used to study the effects of size, thickness, material property, aspect ratio, and the position of the attached mass on the buckling load of a sandwich panel under different combinations of boundary conditions. The results presented in this study have hitherto not been reported in the literature.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2020 ◽  
Vol 48 (11) ◽  
pp. 030006052097207
Author(s):  
Jing Ding ◽  
Fei Wang ◽  
Fangchun Jin ◽  
Zhen-kai Wu ◽  
Pin-quan Shen

Objective Tension band plating has recently gained widespread acceptance as a method of correcting angular limb deformities in skeletally immature patients. We examined the role of biomechanics in procedural failure and devised a new method of reducing the rate of implant failure. Methods In the biomechanical model, afterload (static or cyclic) was applied to each specimen. The residual stress of the screw combined with different screw sizes and configurations were measured and compared by X-ray diffraction. With regard to static load and similar conditions, the stress distribution was analyzed according to a three-dimensional finite element model. Results The residual stress was close to zero in the static tension group, whereas it was very high in the cyclic load group. The residual stress of screws was significantly lower in the convergent group and parallel group than in the divergent group. The finite element model showed similar results. Conclusions In both the finite element analysis and biomechanical tests, the maximum stress of the screw was concentrated at the position where the screws enter the cortex. Cyclic loading is the primary cause of implant failure.


Author(s):  
Cagri Mollamahmutoglu ◽  
Idris Bedirhanoglu

In this study, the performance of a damaged dam was evaluated through a three-dimensional finite element model. The dam is located in Derbendikhan city of Northern Iraq and damaged during a 7.3 magnitude earthquake which was happened 30 kilometers south of Halabja city. Derbendikhan dam which was built between the years 1956-1961 is a clay-core rock fill dam. The damage of the dam was investigated at the site right after the earthquake and some cracks were observed in the main body of the dam. The main goal of this work is to present the results of the survey which was conducted at the site and investigating the damage development mechanism through a realistic three-dimensional finite element model of the dam. As complying with the observations at the site, the finite element analysis has shown that the primary failure mechanism is due to the separation of the core and rock fill sections at the downstream side of the dam.


Author(s):  
V. Prakash ◽  
R. J. Montague

Abstract This paper presents the diagnostics of the effects of vibration on the precise placement of electronic components in a surface mount assembly process. Experimental Modal Analysis using present day software/hardware as well as a three dimensional finite element model are performed on the machine structure. Correlation between the experiment and finite element model are also performed and the strength of using the finite element model as a test model for contemplating any design alterations are presented.


2010 ◽  
Vol 97-101 ◽  
pp. 3924-3927 ◽  
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Zhong Hu Jia ◽  
Yong Gao ◽  
Wen Lin Liu

Three-dimensional finite element model of a bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of surface strains and load transfer ratio(LTR) were compared with results from finite element analysis. The results show that three-dimensional finite element model of bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of different parameters on the mechanical behaviour of single lap bolted joints. The results show that straight hole, small bolt diameter, and big hole pitch are selected first for bolted joint if other conditions allowed, and effect of bolt material on LTR of joint is small for small load. Interference and pre-stress should be strictly controlled for bolted joints in order to attain the best fatigue capability of lap joint.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the compressive behavior of flexible pipes, a nonlinear tridimensional finite element model was developed. This model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape and a rigid inner nucleus. Using this model, several studies are being conducted to verify the influence of key parameters on the wire instability phenomenon. The pipe sample length can be considered one of these parameters and its variation causes significant change at the stability response of the tensile layers. This article includes a detailed description of the finite element model itself and a case study where the length of the pipe is changed. The procedure of this analysis is here described, along with the results.


2021 ◽  
Author(s):  
Qian dong Yang ◽  
Le Chang ◽  
Xuting Bian ◽  
Lin Ma ◽  
Tao Xu ◽  
...  

Abstract Back ground:A three-dimensional finite element model of the whole foot with high geometric similarity was established and used to simulate the conditions after whole talar prosthesis implantation with several fixation methods, including Screw fixation of subtalar+talus-navicular joint, fixation with screws at only the subtalar joint, and fixation without screws. The biomechanical characteristics of the talus prosthesis were assessed in different gait phases to guide the selection of surgical methods in clinical practice.Methods:With the three-dimensional CT data of a volunteer's foot, Mimics13.0 and Geomagic10.0 software were used to carry out geometric reconstruction of the ankle-related tissues, and Hypermesh10.0 software was used for grid division and material attribute selection. Finally, the data were imported into Abaqus 6.9, and the simulated screw data were applied to different models. Finite element models with different fixation methods were simulated, and the stresses exerted by the human body in three gait phases (heel-strike, midstance and push-off) were simulated. The pressure changes in the articular surface around the talus or the prosthesis, the micromotion of the talus and the prosthesis and ankle motion were measured. Results:Finite element analysis on the biomechanical mechanism showed that screw fixation of the prosthesis in different gait phases mainly increases the pressure on the tibialis articular surface as well as decreases the pressure on the fused articular surface and joint micromotion, which hinders ankle motion. The indicator values were nearly the same in the models of fixation without screws and the normal state.Conclusion:The 3D finite element model created in this study has been verified to be an accurate and reliable model. The biomechanical mechanism varies by fixation method according to finite element analysis. Fixation of the prosthesis without screws yields values most similar to normal values.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 631-638
Author(s):  
Hucheng Chen ◽  
Wei Han ◽  
Jinhao Qiu

Better understanding of the characteristics of the traveling wave and three-dimensional trajectory related to motion on the surface of the stator is very important for the design and performance improvement of the ultrasonic motors. In this paper, an accurate finite element model of a single stator with a fully coupled piezoelectric layer was established at a moderate computational cost. The finite element model was verified by experimental test at the inverse resonance point. Based on this model, the traveling wave and three-dimensional trajectory of stator surface, including the influence of the input voltage on the phase and amplitude of the displacements in three directions, are investigated. The results show that the trajectory of particles on the stator surface is an ellipse in three-dimensional space due to the phase differences between the three components of displacement in the radial, circumferential and axial directions. The amplitude of radial displacement is about 39.5% of that in the circumferential displacement, which should not be neglected.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the compressive behavior of flexible pipes, a nonlinear Finite Element model was developed. This fully tridimensional model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape and a rigid inner nucleus. The friction coefficient is known as a key parameter in determining the instability response of flexible pipes tensile armor. Since the featured model includes all nonlinear frictional contacts between the layers, it has been used to conduct several experiments in order to investigate its influence on the response. This article includes a description of the Finite Element Model itself and a case study where the friction between the layers of the pipe is changed. The procedure of this analysis is here described, along with the results.


Sign in / Sign up

Export Citation Format

Share Document