scholarly journals Internal Flow in an Enhanced Tube Having Square-cut Twisted Tape Insert

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 306 ◽  
Author(s):  
Agung Wijayanta ◽  
Pranowo ◽  
Mirmanto ◽  
Budi Kristiawan ◽  
Muhammad Aziz

In this study, a numerical simulation has been conducted in order to evaluate the thermal hydraulic performance of a turbulent single-phase flow inside an enhanced tube equipped with a square-cut twisted tape (STT) insert. The classical twisted tape (CTT) insert was also investigated for comparison. The k-ε renormalized group turbulence model has been utilized as the turbulent model. Various twist ratios (y/W) of 2.7, 4.5, and 6.5 were investigated for the Reynolds number range of 8000–18,000, with water as the working fluid. The numerical results indicated that, in comparison with the plain tube (PT), the tube equipped with the STT with the twist ratios of 2.7, 4.5, and 6.5 led to an increase in the values of the Nusselt number and friction factor in the inner tube by 45.4–80.7% and 2.0–3.3 times, respectively; in addition, the highest thermal performance of 1.23 has been obtained. The results further indicated that the tube equipped with the CTT of the same twist ratios improved the Nusselt number and friction factor in the inner tube by 40.3–74.4% and 1.7–3.0 times, respectively, in comparison with the PT; further, the maximum thermal performance of 1.18 was achieved.

ROTASI ◽  
2015 ◽  
Vol 17 (3) ◽  
pp. 120
Author(s):  
Indri Yaningsih ◽  
Tri Istanto ◽  
Wibawa Endra Juwana

Heat transfer, flow friction and thermal performance factor characteristics in a concentric pipe heat exchanger fitted perforated twisted tape insert with parallel wings (PTPW), using water as working fluid are investigated experimentally. The design of PTPW involves the following concepts: (1) wings induce an extra turbulence near tube wall and thus efficiently disrupt a thermal boundary layer (2) holes existing along a core tube, diminish pressure loss within the tube. The experiments are conducted using the PTPW with the three wing depth ratio (w/W = 0.16, 0.24 and 0.32) and constant the hole diameter ratio (d/W) of 0.24 over a Reynolds number range of 5800–18,500. A typical twisted tape insert (TT) was also tested for a comparison. The results show that both mean Nusselt number and mean friction factor associated by all twisted tape are consistently higher than those without twisted tape (plain tube). It is also found that Nusselt number, friction factor and thermal performance factor increase with increasing wing depth ratio. Over the range considered, Nusselt number and friction factor in a concentric pipe heat exchanger with the PTPW are, respectively, 1.14–1.42 and 1.12–1.40 times of those in the tube with typical twisted tape (TT).


Author(s):  
L. Syam Sundar ◽  
E. Venkata Ramana ◽  
Zafar Said ◽  
António M.B. Pereira ◽  
Antonio C.M. Sousa

Abstract The friction factor, thermal performance, and heat transfer are experimentally analyzed for reduced-graphene oxide/cobalt oxide (rGO/CO3O4) hybrid nanomaterial-based nanofluid circulating in a plain tube with and without twisted tape inserts having different pitches. The reduced-graphene oxide/cobalt oxide (rGO/CO3O4) hybrid nanomaterial is prepared using in situ/chemical reduction technique and then characterized with transmission electron microscope, X-ray diffraction, and magnetometry. The experiments were conducted with different values of particle loading (0.05%, 0.1%, and 0.2%) and Reynolds number (2000–2,020,000). Three twisted tape inserts of helixes 285 mm, 190 mm, and 95 mm were used. The nanofluids was produced from the addition of the hybrid nanomaterial to water yield an increase, as compared to the basefluid (water), of the Nusselt number, which is further enhanced by increasing the nanoparticle loading. Therefore, when compared to water, the Nusselt number is enhanced by 25.65%, with no twisted tape and by 79.16% with twisted tape with helix of 95 mm for the nanofluid of 0.2% volume concentration. However, when compared to water, there is a slight friction factor penalty with the 0.2% particle loading of 1.11-times and 1.49-times for the plain tube and for the 95-mm twisted tape helix, respectively. The thermal performance factor gets enhanced by increasing the nanoparticles concentration of the hybrid nanofluids with or without twisted tape inserts, and it is always higher than one. Based on the experimental data, regression equations were developed for the Nusselt number and friction factor.


Author(s):  
Shashank Ranjan Chaurasia ◽  
RM Sarviya

In the heat exchangers, twisted tape insert is a technique to enhance heat transfer. In this paper, the experimental and numerical investigations are arranged to analyze thermal performance with entropy generation analysis on single and double strip helical screw tape inserts. The finite volume method is used with shear stress transport K-ω model to analyze fluid flow in tube with inserts. The Nusselt number attained enhancement with double strip as compared to single strip helical screw inserts at decreased values of twist ratio and increased values of Reynolds number. However, the Nusselt number attained maximum enhancement of 112% with double strip helical screw insert than plain tube at 4000 of Reynolds number (Re). The common correlations for Nusselt number and friction factor are generated with respect to Reynolds number, number of the strips and twist ratio. Entropy generation analysis is also performed. The thermal performance factor attained its enhancement with double strip than single strip helical screw inserts at twist ratio of 2.5 and 3; whereas, double strip helical screw insert attained maximum value of 1.5 at twist ratio of 2.5 and Reynolds number of 16000. The double strip helical screw inserts are suitable for miniaturization of heat exchanger.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3170 ◽  
Author(s):  
Agung Wijayanta ◽  
Muhammad Aziz ◽  
Keishi Kariya ◽  
Akio Miyara

A numerical study was performed to investigate the thermal performance characteristics of an enhanced tube heat exchanger fitted with punched delta-winglet vortex generators. Computational fluid dynamics modeling was applied using the k–ε renormalized group turbulence model. Benchmarking was performed using the results of the experimental study for a similar geometry. Attack angles of 30°, 50°, and 70° were used to investigate the heat transfer and pressure drop characteristics of the enhanced tube. Flow conditions were considered in the turbulent region in the Reynolds number range of 9100 to 17,400. A smooth tube was employed for evaluating the increment in the Nusselt number and the friction factor characteristics of the enhanced tube. The results show that the Nusselt number, friction factor, and thermal performance factor have a similar tendency. The presence of this insert offers a higher thermal performance factor as compared to that obtained with a plain tube. Vortex development in the flow structure aids in generating a vortex flow, which increases convective heat transfer. In addition, as the angle is varied, it is observed that the largest attack angle provides the highest thermal performance factor. The greatest increase in the Nusselt number and friction factor, respectively, was found to be approximately 3.7 and 10 times greater than those of a smooth tube. Through numerical simulations with the present simulation condition, it is revealed that the thermal performance factor approaches the value of 1.1. Moreover, the numerical and experimental values agree well although they tend to be different at high Reynolds number conditions. The numerical and experimental values both show similar trends in the Nusselt number, friction factor, and thermal performance factor.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
M. Murugan ◽  
R. Vijayan ◽  
A. Saravanan ◽  
S. Jaisankar

In this present work, the influence of corrugated booster reflectors (CBR) in a centrally finned twist (CFT) inserted solar thermal collector (SC) on heat transfer and thermal performance characteristics has been approached experimentally. The experimental trials have been made with two different twist ratios (Y = 3 and 6) for typical twist (TT) and CFT under same working conditions. The results were compared with the plain tube SC with CBR plain and also with the plain tube SC with flat booster reflectors (FBR plain). The experimental result of the CBR plain has been verified with the standard equations and found the deviations within ±10.05% for Nusselt number and ±9.42% for friction factor. The CBR has 1.6% higher effective reflection area than the FBR. Hence, the CBR augmented the Nusselt number around 8.25% over the FBR. When compared to the CBR plain, the CFT of minimum twist ratio (Y = 3) offered 10.09% higher thermal efficiency. In addition, empirical correlations have been derived for predicting the Nusselt number and friction factor. The deviations of the predicted value from the experiment value fall within ±10.62% for Nusselt number and ±11.28% for friction factor.


CFD letters ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 20-31
Author(s):  
Birlie Fekadu ◽  
Harish H.V ◽  
Manjunath. K

Heat transfer augmentation is an important concern due to the increase in heat management problems in thermal systems. There are many techniques for enhancement of heat transfer, by active and passive techniques. A commonly used passive technique to enhance heat transfer is by inserting twisted tapes in tubes. This work presents a numerical study on Nusselt number, friction factor, and thermal performance characteristics through a circular pipe built-in with/without dimples on twisted tape. The analysis results for a turbulent flow range of 4500≤Re≤20000 are obtained with a twist ratio of the strip is 3.0. The analysis is carried for full-length tape with constant heat flux. The governing equations are numerically solved by a finite volume method using the RNG κ–ε model. The simulation results of Nusselt number versus Reynolds number of the plain, plain twisted tape and dimple twisted tape tube with the experimental data give a variation of 4.15%, 3.89%, and 7.65%. The friction factor of the dimple twisted tape tube is 60 to 70% higher than that of the plain twisted tube at different Reynolds numbers. The thermal performance factor of the dimple twisted tape and plain twisted tape tube is 30 to 35% respectively higher than that of the plain tube. Due to thermal performance factor is above unity yields a promising heat transfer enhancement. By the present study, an optimum geometrical parameter can be selected for use in heat exchangers.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sami D. Salman ◽  
Abdul Amir H. Kadhum ◽  
Mohd S. Takriff ◽  
Abu Bakar Mohamad

This paper presents the application of a mathematical model for simulation of the swirling flow in a tube induced by elliptic-cut and classical twist tape inserts. Effects of the twist ratio (y=2.93, 3.91, and 4.89) and cut depth (w=0.4, 0.8, and 1.4 cm) on heat transfer enhancement (Nu) and friction factor (f) in laminar flow are numerically investigated. The simulation is carried out using commercial CFD package (FLUENT-6.3.26) to grasp the physical behaviour of the thermal and fluid flows of a constant heat-fluxed tube fitted with elliptic-cut twist tape in the laminar flow regime for the Reynolds number ranging from 200 to 2100. The simulated results matched the literature correlations of plain tube for validation with 8% variation for Nusselt number and 10% for friction factor. The results show that the heat transfer rate and friction factor in the tube equipped with elliptic-cut twist tape (ECT) are significantly higher than those fitted with classical twist tape (CTT). Moreover the results also reveal that the Nusselt number and the friction factor in the tube with elliptic-cut twisted tape (ECT) increase with decreasing twist ratios (y) and cut depths (w).


Author(s):  
Pornchai Nivesrangsan ◽  
Somsak Pethkool ◽  
Kwanchai Nanan ◽  
Monsak Pimsarn ◽  
Smith Eiamsa-ard

This paper presents the heat transfer augmentation and friction factor characteristics by means of dimpled tubes. The experiments were conducted using the dimpled tubes with two different dimpled-surface patterns including aligned arrangement (A-A) and staggered arrangement (S-A), each with two pitch ratios (PR = p/Di = 0.6 and 1.0), for Reynolds number ranging from 9800 to 67,000. The experimental results achieved from the dimpled tubes are compared with those obtained from the plain tube. Evidently, the dimpled tubes with both arrangements offer higher heat transfer rates compared to the plain tube and the dimpled tube with staggered arrangement shows an advantage on the basis of heat transfer enhancement over the dimpled tube with aligned arrangement. The increase in heat transfer rate with reducing pitch ratio is due to the higher turbulent intensity imparted to the flow between the dimple surfaces. The mean heat transfer rate offered by the dimpled tube with staggered arrangement (S-A) at the lowest pitch ratio (PR = 0.6), is higher than those provided by the plain tube and the dimpled tube with aligned arrangement (A-A) at the same PR by around 127% and 8%, respectively. The empirical correlations developed in terms of pitch ratio (PR), Prandtl number (Pr) and Reynolds number, are fitted the experimental data within ±8% and ±2% for Nusselt number (Nu) and friction factor (f), respectively. In addition, the thermal performance factors under an equal pumping power constraint of the dimple tubes for both dimpled-surface arrangements are also determined.


Author(s):  
Jin Xu ◽  
Jiaxu Yao ◽  
Pengfei Su ◽  
Jiang Lei ◽  
Junmei Wu ◽  
...  

Convective heat transfer enhancement and pressure loss characteristics in a wide rectangular channel (AR = 4) with staggered pin fin arrays are investigated experimentally. Six sets of pin fins with the same nominal diameter (Dn = 8mm) are tested, including: Circular, Elliptic, Oblong, Dropform, NACA and Lancet. The relative spanwise pitch (S/Dn = 2) and streamwise pitch (X/Dn = 4.5) are kept the same for all six sets. Same nominal diameter and arrangement guarantee the same blockage area in the channel for each set. Reynolds number based on channel hydraulic diameter is from 10000 to 70000 with an increment of 10000. Using thermochromic liquid crystal (R40C20W), heat transfer coefficients on bottom surface of the channel are achieved. The obtained friction factor, Nusselt number and overall thermal performance are compared with the previously published data from other groups. The averaged Nusselt number of Circular pin fins is the largest in these six pin fins under different Re. Though Elliptic has a moderate level of Nusselt number, its pressure loss is next to the lowest. Elliptic pin fins have pretty good overall thermal performance in the tested Reynolds number range. When Re>40000, Lancet has a same level of performance as Circular, but its pressure loss is much lower than Circular. These two types are both promising alternative configuration to Circular pin fin used in gas turbine blade.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Chirag R. Kharangate ◽  
Ki Wook Jung ◽  
Sangwoo Jung ◽  
Daeyoung Kong ◽  
Joseph Schaadt ◽  
...  

Three-dimensional (3D) stacked integrated circuit (IC) chips offer significant performance improvement, but offer important challenges for thermal management including, for the case of microfluidic cooling, constraints on channel dimensions, and pressure drop. Here, we investigate heat transfer and pressure drop characteristics of a microfluidic cooling device with staggered pin-fin array arrangement with dimensions as follows: diameter D = 46.5 μm; spacing, S ∼ 100 μm; and height, H ∼ 110 μm. Deionized single-phase water with mass flow rates of m˙ = 15.1–64.1 g/min was used as the working fluid, corresponding to values of Re (based on pin fin diameter) from 23 to 135, where heat fluxes up to 141 W/cm2 are removed. The measurements yield local Nusselt numbers that vary little along the heated channel length and values for both the Nu and the friction factor do not agree well with most data for pin fin geometries in the literature. Two new correlations for the average Nusselt number (∼Re1.04) and Fanning friction factor (∼Re−0.52) are proposed that capture the heat transfer and pressure drop behavior for the geometric and operating conditions tested in this study with mean absolute error (MAE) of 4.9% and 1.7%, respectively. The work shows that a more comprehensive investigation is required on thermofluidic characterization of pin fin arrays with channel heights Hf < 150 μm and fin spacing S = 50–500 μm, respectively, with the Reynolds number, Re < 300.


Sign in / Sign up

Export Citation Format

Share Document