scholarly journals Exergetic Performance Investigation of Varying Flashing From Single to Quadruple for Geothermal Power Plants

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Osamah Siddiqui ◽  
Ibrahim Dincer

Geothermal power plants are considered important renewable energy resources for clean energy production. Flash steam type plants constitute a significant portion of worldwide geothermal power. In this study, single, double, triple, and quadruple flash steam geothermal power plants are investigated with reinjection options. The optimal operating points are determined specifically through optimal flashing pressures. The turbine power outputs, energy efficiencies, and exergy efficiencies are further studied. A rise in the flashing stages from single to double is found to increase the power outputs considerably. However, when the flashing stages are increased from double to triple and triple to quadruple, the increase in turbine power outputs is found to drop significantly. Also, both exergy efficiency and energy efficiency are found to reduce with increasing number of flash stages. The energy efficiencies are obtained as 28%, 25.5%, 24.2%, and 23.5% for single, double, triple, and quadruple plants, respectively. Furthermore, the exergy efficiencies are found to be 72.6%, 70.9%, 70.2%, and 69.8% for these plants, respectively.

Author(s):  
Abdullah Kececiler

Abstract Since the middle of this century the growing fact of the unexpected environmental conditions and the rapid increase in the energy consumption have resulted in the fact that the efficient use of the energy and to exploit a new and renewable energy resources are inevitable. In the recent years, increasing importance in the issue of the best use of available energy resources are discussed with the application of the combined heat-power plants. In this paper, the performance of the conventional energy plants and combined heat-power plants are compared. For this reason a new design criterions for the combined heat-power plant are introduced here. The rationality of these new design criterions are tested in thermal energy and gas turbine plants. The obtained results are then compared with the conventional energy plants. It is proven that this new design methodology will provide more energy saving and minimize the heat losses that is produced during energy production.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jamile Mohammadi Moradian ◽  
Zhen Fang ◽  
Yang-Chun Yong

AbstractBiomass is one of the most abundant renewable energy resources on the earth, which is also considered as one of the most promising alternatives to traditional fuel energy. In recent years, microbial fuel cell (MFC) which can directly convert the chemical energy from organic compounds into electric energy has been developed. By using MFC, biomass energy could be directly harvested with the form of electricity, the most convenient, wide-spread, and clean energy. Therefore, MFC was considered as another promising way to harness the sustainable energies in biomass and added new dimension to the biomass energy industry. In this review, the pretreatment methods for biomass towards electricity harvesting with MFC, and the microorganisms utilized in biomass-fueled MFC were summarized. Further, strategies for improving the performance of biomass-fueled MFC as well as future perspectives were highlighted.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Author(s):  
Baba Dzhabrailovich Babaev ◽  
Vladimir Panchenko ◽  
Valeriy Vladimirovich Kharchenko

The main objective of the work is to develop principles for the formation of the optimal composition of the energy complex from all the given power plants based on renewable energy sources for an autonomous consumer, taking into account the variable energy loads of the consumer, changing climatic conditions and the possibility of using local fuel and energy resources. As a result of solving this optimization problem, in addition to the optimal configuration of the power complex, it is also necessary to solve the problem of optimizing the joint operation of different types of power plants from the selected optimal configuration, that is, it is necessary to determine the optimal modes of operation of power plants and the optimal share of their participation in providing consumers at every moment in time. A numerical method for analyzing and optimizing the parameters and operating mode of the energy complex with the most accurate consideration of the schedule of changes in consumer load and software that automates the solution of this optimization problem are also presented.


2016 ◽  
Vol 858 ◽  
pp. 1028-1031 ◽  
Author(s):  
Jian Wu Sun ◽  
Valdas Jokubavicius ◽  
Lu Gao ◽  
Ian Booker ◽  
Mattias Jansson ◽  
...  

There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.


2011 ◽  
Vol 110-116 ◽  
pp. 4101-4105 ◽  
Author(s):  
Tosawat Seetawan

Fossil fuel is the main energy resources of the world. About 80-90% of its primary energy need to supply by oil, coal, natural gas, and oil shale [1]. These energy resources will also be of importance in the future but non-renewable and cause problems to the environment as a result of their relatively high amount of carbon dioxide (CO2), carbon monoxide (CO), and other environmentally harmful emissions. We are investigating to look for alternative energy resources which are clean, safe, and long-term reliable. Thermoelectricity is one of the renewable energy resources that has been widely investigated and is expected to be feasible in the near future. Moreover, it is a clean energy generation, since it can directly convert heat to electrical energy by using non-polluting thermoelectric devices. These are reasons for the growing interest in further research and development of the thermoelectric technology. The search for new thermoelectric materials is important that the transition metal oxides were interested such as p-type Ca3Co4O9 [2-7] and n-type CaMnO3 [8-12]. There have been synthesized using different techniques in the form of powder and bulk. However, the doped metals have been expected to be one of the candidates for good thermoelectric materials, including thermoelectric module consists of two or more materials of p-type and n-type [13-15]. Recently, the thermoelectric module is also being used as the thermoelectric generators, thermoelectric coolers, etc. [16-17].


Author(s):  
Anahí Bermúdez-Romero ◽  
Vanesa Magar ◽  
Markus S. Gross ◽  
Victor M. Godínez ◽  
Manuel López-Mariscal ◽  
...  

While many in-steam tidal energy resource studies have been carried out globally, very few studies have assessed the effect of seabed changes on tidal energy resources. For coastal regions in particular, where the seabed is generally more mobile than in deep waters, bathymetric evolution could have a significant effect on tidal energy production. Here two high-resolution models, one purely hydrodynamic and one morphodynamic, are used to analyse the potential effect of natural morphodynamic evolution on tidal energy resources at two macro-tidal sandy bays, Adaír Bay and San Jorge Bay, in the Upper Gulf of California, Mexico. The high-resolution models are validated using a low-resolution model and ADCP observations to assess the agreement between model predictions and observations of tides at three ADCP moorings within the domain of interest. The models’ skill is evaluated using several error statistics such as the mean relative error, the root mean square error (RMSE), and the correlation coefficient. It was found that the regions with the largest bed changes, and also the largest renewable energy resources, were near the shore. Moreover, the results indicated a good correlation between a) regions with the most significant depth changes, and b) the regions where the difference in annual energy production with and without depth change was largest. Finally, the morphodynamic model was run for two years, and the evolution of a zonal profile (in the west-east direction) off the coast at the southeastern corner of Adaír Bay was inspected. This profile evolved towards a featureless equilibrium profile, in good agreement with the morphological classification for macro-tidal sandy environments and with the model assumptions. But most importantly, this natural evolution would not be detrimental to tidal energy exploitation at the site.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Stefan Ditchev

The report refers to the wider practical application of heat pumps in terms of rational use of energy resources; energy efficiency; environmental efficiency and technology innovation. Energy conservation, reduction of carbon footprint in energy production and consumption and technology innovation are global issues. The paper focuses on low potential energy sources needed to heat pumps, types of heat pumps, main guidelines and challenges when using heat pumps and the experience of experts from the Bulgarian school.


The searching for diversification of energy resources in Brazil has become extremely necessary due to two main factors. The first one is the current hydric situation in which the country is passing through; with the scarcity of rain, the generation situation through hydroelectric power plants is being compromised. Since the significant reduction in rainfall, power generation by hydroelectric plants has not been sufficient to supply the demand. Consequently, the need to use thermoelectric power plants has increased the energy price. Secondly, secondly, the explorations of renewable energy resources bring flexibility and sustainability. In this scenario, photovoltaic solar energy presents itself as a technology in constant advance in Brazil and around the world. Through a bibliographical review, this article aims to present the principle of the use of this energy, considering the equipment and materials applied to the system, as well as the efficiency they can achieve. In addition, there is a broader view of the use of sunlight to produce electricity through photovoltaic panels and the applications of this technology in specific situations, such as installation on streetlights. The use of photovoltaic energy is a reality that states increasingly in several countries. In Brazil the manufacturing of photovoltaic systems need to reach an industrial scale to reduce costs, technical conditions and the uncertainty of the extent that this market will reach in the coming years also bring difficulties to final consolidation of solar photovoltaic generation in Brazil. There are several uses for a system that generates electricity


Sign in / Sign up

Export Citation Format

Share Document