scholarly journals Recent advances on biomass-fueled microbial fuel cell

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jamile Mohammadi Moradian ◽  
Zhen Fang ◽  
Yang-Chun Yong

AbstractBiomass is one of the most abundant renewable energy resources on the earth, which is also considered as one of the most promising alternatives to traditional fuel energy. In recent years, microbial fuel cell (MFC) which can directly convert the chemical energy from organic compounds into electric energy has been developed. By using MFC, biomass energy could be directly harvested with the form of electricity, the most convenient, wide-spread, and clean energy. Therefore, MFC was considered as another promising way to harness the sustainable energies in biomass and added new dimension to the biomass energy industry. In this review, the pretreatment methods for biomass towards electricity harvesting with MFC, and the microorganisms utilized in biomass-fueled MFC were summarized. Further, strategies for improving the performance of biomass-fueled MFC as well as future perspectives were highlighted.

Author(s):  
Raluca-Andreea Felseghi ◽  
Florin Badea

Science has shown that there are two sustainable alternatives to providing energy needs: renewable energy resources and fuel cells-hydrogen-based energy, which will play a complementary role in securing global energy resources. By promoting the use of hydrogen-based energy technologies, as clean energy technologies for stationary applications, at the level of local communities, industrial and commercial communities, research topics in this field will help the practical development of sustainable and clean energy systems. This chapter provides an overview of fuel cells highlighting aspects related to fuel cell short history, the main components and operating principles of fuel cells, the main constructive fuel cell types, and the main ways of powering stationary applications through the hydrogen fuel cell technologies.


2019 ◽  
Vol 03 ◽  
Author(s):  
Muhammad Sohaib ◽  
Adeel Ahmed ◽  
Imran Aslam ◽  
Muhammad Sagir ◽  
Jawaria Bin Faheem ◽  
...  

Herein, the recent development and future perspectives of nanophotocatalysis has been discussed for the sustainable and green energy generation through microbial fuel cell (MFC). The artificial photosynthesis and biomass energy production methods have reviewed comprehensively. Further, the fabrication, fundamental aspects and purposes of MFC have been discussed to clearly elaborate the concept of energy production. A lot of effort have been done to convert light energy to biomass energy artificially which is then converted into electric or mechanical energy for further use. Recent age is facing plenty of challenges to convert the light energy to bioenergy.


2013 ◽  
Vol 4 (2) ◽  
pp. 151-156 ◽  
Author(s):  
G. Kozma ◽  
E. Molnár ◽  
K. Czimre ◽  
J. Pénzes

Abstract In our days, energy issues belong to the most important problems facing the Earth and the solution may be expected partly from decreasing the amount of the energy used and partly from the increased utilisation of renewable energy resources. A substantial part of energy consumption is related to buildings and includes, inter alia, the use for cooling/heating, lighting and cooking purposes. In the view of the above, special attention has been paid to minimising the energy consumption of buildings since the late 1980s. Within the framework of that, the passive house was created, a building in which the thermal comfort can be achieved solely by postheating or postcooling of the fresh air mass without a need for recirculated air. The aim of the paper is to study the changes in the construction of passive houses over time. In addition, the differences between the geographical locations and the observable peculiarities with regard to the individual building types are also presented.


Author(s):  
Atin Kumar Pathak ◽  
V. V. Tyagi ◽  
Har Mohan Singh ◽  
Vinayak V. Pathak ◽  
Richa Kothari

2013 ◽  
pp. 143-146
Author(s):  
Orsolya Nagy

The use of renewable energies has a long past, even though its share of the total energy use is rather low in European terms. However, the tendencies are definitely favourable which is further strengthened by the dedication of the European Union to sustainable development and combat against climate change. The European Union is on the right track in achieving its goal which is to be able to cover 20% its energy need from renewable energy resources by 2020. The increased use of wind, solar, water, tidal, geothermal and biomass energy will reduce the energy import dependence of the European Union and it will stimulate innovation.


2016 ◽  
Vol 9 (3) ◽  
pp. 56 ◽  
Author(s):  
Mohammed Ebrahim Hussien ◽  
Chamhuri Siwar ◽  
Rashidah Zainal Alam ◽  
Abdul Hamid Jafar ◽  
Norasikin Ahmad Ludin

<p>Since conventional energy resources are major source of CO<sub>2</sub> emission, over reliance on fossil fuels has raised questions on environmental sustainability. On way to address these multi-faceted issues of conventional energy sources, the sustainability of energy and environment is through the green economy approach. As such, this paper aims to discuss the concept of green economy in relation with renewable energy. The interdependence of green economy and environmental quality as well as the compatibility of green economy approach with the notion of sustainable development are demonstrated in the paper. Green economy approach fulfils the methodological gaps that exist in the growth models. It is believed that the best economic tool to attain sustainable development goals is by integrating social, economic and environmental elements. Furthermore, energy is believed to be a significant player in determining the greenness of the economy and sustainability as it has economic and environmental value. In addition, this study illustrates the significance of biomass energy resource and CO<sub>2</sub> emissions from fossil fuel combustion. The illustration framework justifies that biomass is the determinant renewable energy source to be a proxy for renewable energy resources. Similarly, it justifies that CO<sub>2</sub> emission of energy sector is considerably significant to represent the CO<sub>2</sub> emissions of the atmosphere.</p>


2016 ◽  
Vol 858 ◽  
pp. 1028-1031 ◽  
Author(s):  
Jian Wu Sun ◽  
Valdas Jokubavicius ◽  
Lu Gao ◽  
Ian Booker ◽  
Mattias Jansson ◽  
...  

There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.


2011 ◽  
Vol 110-116 ◽  
pp. 4101-4105 ◽  
Author(s):  
Tosawat Seetawan

Fossil fuel is the main energy resources of the world. About 80-90% of its primary energy need to supply by oil, coal, natural gas, and oil shale [1]. These energy resources will also be of importance in the future but non-renewable and cause problems to the environment as a result of their relatively high amount of carbon dioxide (CO2), carbon monoxide (CO), and other environmentally harmful emissions. We are investigating to look for alternative energy resources which are clean, safe, and long-term reliable. Thermoelectricity is one of the renewable energy resources that has been widely investigated and is expected to be feasible in the near future. Moreover, it is a clean energy generation, since it can directly convert heat to electrical energy by using non-polluting thermoelectric devices. These are reasons for the growing interest in further research and development of the thermoelectric technology. The search for new thermoelectric materials is important that the transition metal oxides were interested such as p-type Ca3Co4O9 [2-7] and n-type CaMnO3 [8-12]. There have been synthesized using different techniques in the form of powder and bulk. However, the doped metals have been expected to be one of the candidates for good thermoelectric materials, including thermoelectric module consists of two or more materials of p-type and n-type [13-15]. Recently, the thermoelectric module is also being used as the thermoelectric generators, thermoelectric coolers, etc. [16-17].


Author(s):  
Amey Kulkarni ◽  
Amit Breed

Rapid consumption of renewable energy resources has led to development of an alternative source of energy. Fuel cell technology is a reliable and sustainable source of energy which was developed. Microbial fuel cell is a type which uses active micro-organisms as catalysts for production of electricity. The micro-organisms degrade the organic substrate to release protons and electrons which generate a potential difference across the cell. Our study focused on the generation of electricity from human urine using microbial fuel cell system. Specific bacteria were used as inoculum at anaerobic anode chamber and salt solution was supplied at aerobic cathode. The chambers were connected using salt bridge which would facilitate ion transfer. This made the system cost effective. The potential difference generated was measured using digital multi-meter.


2014 ◽  
Vol 1 (2) ◽  
pp. 105-110
Author(s):  
Farid Salahudin ◽  
M. Rusdi Hidayat

Microbial Fuel Cell is the one of renewable technology which can produseed electric energy from waste and other organic matter. MFC reactor have two part wich called anode and cattode chamber that bonded with cattion exchange membrane. Electric energy in MFC was produced by biochemistry reaction in organic matter like palm industrial waste. One of organic matter that pontential in Indonesia is palm industry waste. The aim in this research is to know the potential electric energy in MFC reactor with palm industry waste. The conclusion in this research is MFC with palm industry waste can produced electric energy higher than MFC with 0,5 M glucose solution.  


Sign in / Sign up

Export Citation Format

Share Document