Design Criterion for Increasing the Performance of the Energy Plants

Author(s):  
Abdullah Kececiler

Abstract Since the middle of this century the growing fact of the unexpected environmental conditions and the rapid increase in the energy consumption have resulted in the fact that the efficient use of the energy and to exploit a new and renewable energy resources are inevitable. In the recent years, increasing importance in the issue of the best use of available energy resources are discussed with the application of the combined heat-power plants. In this paper, the performance of the conventional energy plants and combined heat-power plants are compared. For this reason a new design criterions for the combined heat-power plant are introduced here. The rationality of these new design criterions are tested in thermal energy and gas turbine plants. The obtained results are then compared with the conventional energy plants. It is proven that this new design methodology will provide more energy saving and minimize the heat losses that is produced during energy production.

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Osamah Siddiqui ◽  
Ibrahim Dincer

Geothermal power plants are considered important renewable energy resources for clean energy production. Flash steam type plants constitute a significant portion of worldwide geothermal power. In this study, single, double, triple, and quadruple flash steam geothermal power plants are investigated with reinjection options. The optimal operating points are determined specifically through optimal flashing pressures. The turbine power outputs, energy efficiencies, and exergy efficiencies are further studied. A rise in the flashing stages from single to double is found to increase the power outputs considerably. However, when the flashing stages are increased from double to triple and triple to quadruple, the increase in turbine power outputs is found to drop significantly. Also, both exergy efficiency and energy efficiency are found to reduce with increasing number of flash stages. The energy efficiencies are obtained as 28%, 25.5%, 24.2%, and 23.5% for single, double, triple, and quadruple plants, respectively. Furthermore, the exergy efficiencies are found to be 72.6%, 70.9%, 70.2%, and 69.8% for these plants, respectively.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Author(s):  
Baba Dzhabrailovich Babaev ◽  
Vladimir Panchenko ◽  
Valeriy Vladimirovich Kharchenko

The main objective of the work is to develop principles for the formation of the optimal composition of the energy complex from all the given power plants based on renewable energy sources for an autonomous consumer, taking into account the variable energy loads of the consumer, changing climatic conditions and the possibility of using local fuel and energy resources. As a result of solving this optimization problem, in addition to the optimal configuration of the power complex, it is also necessary to solve the problem of optimizing the joint operation of different types of power plants from the selected optimal configuration, that is, it is necessary to determine the optimal modes of operation of power plants and the optimal share of their participation in providing consumers at every moment in time. A numerical method for analyzing and optimizing the parameters and operating mode of the energy complex with the most accurate consideration of the schedule of changes in consumer load and software that automates the solution of this optimization problem are also presented.


2016 ◽  
Vol 19 ◽  
pp. 124-131
Author(s):  
Beate Naser ◽  
Franziska Schäfer ◽  
Jörg Franke

By increasing the share of renewable energy sources, the volatility of available energy is rising. More and more fluctuating power generation by solar power plants and wind turbines has to be integrated into the power grid. Demand side management (DSM) represents one possible solution to achieve this goal by including energy production and energy consumption simultaneously. In this paper, we especially focus on the field of electric energy in smart homes. Considering the implementation of different DSM devices, an ontology-based approach can serve as a conceptual foundation for a necessary knowledge base. We propose an advanced energy ontology for smart homes, integrating important aspects for a successful DSM. We describe how power producers, storages and consumers are represented in our ontology. Finally, we show the scenario-based utilization of our approach.


Author(s):  
Anahí Bermúdez-Romero ◽  
Vanesa Magar ◽  
Markus S. Gross ◽  
Victor M. Godínez ◽  
Manuel López-Mariscal ◽  
...  

While many in-steam tidal energy resource studies have been carried out globally, very few studies have assessed the effect of seabed changes on tidal energy resources. For coastal regions in particular, where the seabed is generally more mobile than in deep waters, bathymetric evolution could have a significant effect on tidal energy production. Here two high-resolution models, one purely hydrodynamic and one morphodynamic, are used to analyse the potential effect of natural morphodynamic evolution on tidal energy resources at two macro-tidal sandy bays, Adaír Bay and San Jorge Bay, in the Upper Gulf of California, Mexico. The high-resolution models are validated using a low-resolution model and ADCP observations to assess the agreement between model predictions and observations of tides at three ADCP moorings within the domain of interest. The models’ skill is evaluated using several error statistics such as the mean relative error, the root mean square error (RMSE), and the correlation coefficient. It was found that the regions with the largest bed changes, and also the largest renewable energy resources, were near the shore. Moreover, the results indicated a good correlation between a) regions with the most significant depth changes, and b) the regions where the difference in annual energy production with and without depth change was largest. Finally, the morphodynamic model was run for two years, and the evolution of a zonal profile (in the west-east direction) off the coast at the southeastern corner of Adaír Bay was inspected. This profile evolved towards a featureless equilibrium profile, in good agreement with the morphological classification for macro-tidal sandy environments and with the model assumptions. But most importantly, this natural evolution would not be detrimental to tidal energy exploitation at the site.


The searching for diversification of energy resources in Brazil has become extremely necessary due to two main factors. The first one is the current hydric situation in which the country is passing through; with the scarcity of rain, the generation situation through hydroelectric power plants is being compromised. Since the significant reduction in rainfall, power generation by hydroelectric plants has not been sufficient to supply the demand. Consequently, the need to use thermoelectric power plants has increased the energy price. Secondly, secondly, the explorations of renewable energy resources bring flexibility and sustainability. In this scenario, photovoltaic solar energy presents itself as a technology in constant advance in Brazil and around the world. Through a bibliographical review, this article aims to present the principle of the use of this energy, considering the equipment and materials applied to the system, as well as the efficiency they can achieve. In addition, there is a broader view of the use of sunlight to produce electricity through photovoltaic panels and the applications of this technology in specific situations, such as installation on streetlights. The use of photovoltaic energy is a reality that states increasingly in several countries. In Brazil the manufacturing of photovoltaic systems need to reach an industrial scale to reduce costs, technical conditions and the uncertainty of the extent that this market will reach in the coming years also bring difficulties to final consolidation of solar photovoltaic generation in Brazil. There are several uses for a system that generates electricity


2018 ◽  
Vol 8 (10) ◽  
pp. 1733
Author(s):  
Eunil Park ◽  
Angel del Pobil

Since the importance and effects of national energy policies, plans, and roadmaps were presented in South Korea, the role of renewable energy resources has received great attention. Moreover, as there is significant reasoning for reducing and minimizing nuclear and fossil fuel usage in South Korean national energy plans, several academic scholars and implementers have expended significant effort to present the potential and feasibility of renewable energy resources in South Korea. This study contributes to these efforts by presenting potential sustainable configurations of renewable energy production facilities for a public building in South Korea. Based on economic, environmental, and technical information as well as the presented simulation results, it proposes an environmentally friendly renewable energy production facility configuration that consists of photovoltaic arrays, battery units, and a converter. Subsidies for installing and renovating such facilities are also considered. The potential configuration indicates $0.464 as the cost of energy, 100% of which is renewable. Potential limitations and future research areas are suggested based on the results of these simulations.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1918 ◽  
Author(s):  
Alfonso Risso ◽  
Alexandre Beluco ◽  
Rita Marques Alves

Hybrid energy systems have higher initial costs than systems that are based on only one renewable resource, but allow for the fulfillment of the demands of consumer loads with lower values for the cost of energy. The possible complementarity between the resources used can contribute to a better use of the available energy. On a large scale, complementarity between power plants can serve as a tool for the management of energy resources. A complete evaluation of complementarity needs to consider three components: time complementarity, energy complementarity, and complementarity between amplitudes of variation. Complementarity can also be assessed between energy resources in one place (which may be termed temporal complementarity) and between resources at different sites (termed spatial complementarity). This paper proposes a method for quantifying spatial complementarity over time and for its expression through maps. The method suggests the establishment of a hexagonal network of cells and the determination of complementary roses for each cell that contains power plants. This article also applies the method proposed to some hydroelectric plants and wind farms in the State of Rio Grande do Sul, in southern Brazil, and present the map of spatial complementarity in time obtained.


Author(s):  
Sajjad Akbar ◽  
Shahab Khusnood

Electricity is the engine for the growth of economy of any country. Total installed electricity generation capacity of Pakistan is presently approx 20,000 MW as given in Table-1. Despite this, almost 40% of the population is without electricity. Pakistan has been blessed with tremendous resources for electrical power generation with hydel, coal, renewable energy resources and Nuclear power. Hydel, coal potential of more than 40,000 MW and 10,000 MW are available but only 15% of hydroelectric potential has been harnessed so for where as only 150 MW power plant on indigenous coal has been set up. To exploit Pakistan hydel and coal resources for power generation large investments are needed which Pakistan economy can not afford. Govt. of Pakistan has created an organization of private power and infrastructure board (PPIB) to facilitate private sector in the participation of power generator. PPIB is tapping the resources and facilitating the private sector for establishment of power projects. Pakistan is collaborating with China for establishment of Nuclear Power Plants and plan to generate up to 10,000 MW by year 2025. Renewable energy resources are also required to be tapped. This paper will focus on the Pakistan power generation potential by utilizing local resources keeping in view the next 20 year supply and demand position.


Sign in / Sign up

Export Citation Format

Share Document