Characterization of Spinal Needle Buckling Behavior

2019 ◽  
Vol 13 (4) ◽  
Author(s):  
Tessa Hulburt ◽  
Jessica Booth ◽  
Peter Pan ◽  
Philip Brown

Abstract The use of large gauge (G) spinal anesthesia needles can increase complications due to buckling. The purpose of this study was to quantify the behavior of spinal needles in buckling using a repeatable laboratory model. A spinal anesthesia procedure and buckling complication was reproduced in vitro using a custom test fixture designed to match the boundary conditions of needle insertion as performed by an anesthesiologist and a uniaxial servohydraulic material testing machine (MTS, Eden Prairie, MN). Buckling tests were performed with 22 G Whitacre (Medline Industries, Inc., Northfield IL), SPROTTE® (Pajunk, Norcross, GA), and Gertie Marx (International Medical Development, Huntsville, UT) needles (n = 30) in a ballistics gelatin tissue surrogate (Clear Ballistics, Fort Smith, AR). In analyzing axial force results, critical buckling load results were 27.65 ± 0.92 N, signifying that needle fragility is not why buckling is challenging to detect. Force feedback during needle insertion increased linearly due to frictional forces from the tissue surrogate on the needle. The differential between the resultant insertion force and the critical buckling force is more important to the detection of needle buckling than the critical buckling force alone. A very small difference in these two forces could feel like expected resistance increase as the needle is further inserted into the multiple tissue layers. Comparison of the differential between the resultant insertion force and the critical buckling force should be considered when choosing a needle to best detect and prevent a buckling complication.

Author(s):  
Adam Gordon ◽  
Inki Kim ◽  
Andrew C. Barnett ◽  
Jason Z. Moore

Percutaneous medical procedures rely upon clinicians performing precise needle insertion in soft tissue. The utility of haptic simulation systems in training clinicians for these procedures is highly dependent upon the ability to render accurate insertion force feedback. This paper presents a piecewise mathematical model for insertion force that does not require tissue material properties, detailed mechanical approximations, or complex computations. With manipulation of model parameters, a wide variety of insertion tasks and clinical scenarios can be modeled. Through needle insertion experiments and parameter estimation, this model was demonstrated to replicate the insertion forces associated with a variety of needle and tissue types. In 11 of 12 needle and tissue combinations tested, the model replicated the insertion force with an average absolute mean error of less than 0.065 N.


2007 ◽  
Vol 07 (03) ◽  
pp. 325-335 ◽  
Author(s):  
T. DE BOER ◽  
M. STEINBUCH ◽  
S. NEERKEN ◽  
A. KHARIN

Although venipuncture is one of the most common clinical procedures and is performed by trained medical staff, difficulties arise in 5% of insertion procedures. An instrument that guarantees the insertion of a needle into a vein in a single approach is expected to be beneficial to both medical staff and patients. The next step towards automatic venipuncture is to determine if insertion force feedback can be used, irrespective of insertion speed, insertion angle, or vein depth and diameter. Needle insertion experiments are performed on phantom and porcine tissues to study the interaction between the needle and tissue. A prototype instrument is developed to perform automatic venipuncture on the phantom. From the experiments, we conclude that an increased insertion speed of the needle leads to an increase in insertion force and tissue deformation. Furthermore, distinct force peaks are observed at the penetration of phantom skin and vein, thus enabling automatic detection of phantom vein puncture.


Neurosurgery ◽  
2014 ◽  
Vol 75 (6) ◽  
pp. 707-716 ◽  
Author(s):  
Jonathan B. Lamano ◽  
Grace G. Bushnell ◽  
Hongyu Chen ◽  
Avanti Badrinathan ◽  
Najib E. El Tecle ◽  
...  

Abstract Background: Intraoperative rupture (IOR) is a rare, but potentially morbid complication of endovascular aneurysm coil embolization. Yet, IOR predictors have remained relatively uninvestigated in relation to coil design. Objective: To develop a novel in vitro aneurysm model to characterize forces exerted by coils of different design on the aneurysm during endovascular embolization that are hypothesized to contribute to IOR. Methods: A 3-mm saccular aneurysm model was developed with flat latex membrane at the dome apex. Membrane deflection was observed throughout simulated embolization and converted to force measurement. Simultaneous coil insertion and force measurement were accomplished with a compression strength-testing machine. Membrane and insertion forces across coil type, microcatheter tip placement, and insertion rate were evaluated. Results: Insertion force and force directly on the aneurysm wall exhibited a difference, with framing coils exerting greatest force, followed by filling and finishing coils. Regarding microcatheter placement, a similar graded response in membrane and insertion forces was observed with positioning in the top-third of the aneurysm generating the greatest force compared with central and bottom-third placement. Insertion rate was also a factor with the slowest rate (10 mm/min) exhibiting the greatest membrane force, followed by lower forces at 30 and 50 mm/min. A multiple linear regression model was created to assess the contributions of each factor toward aneurysm forces. Conclusion: Increased force on the aneurysm is associated with framing coil use, microcatheter placement proximal to aneurysm dome, and slow insertion rate. Further characterization remains necessary to reduce IOR risk, especially concerning the contributions of insertion rate.


Author(s):  
David Pepley ◽  
Mary Yovanoff ◽  
Katelin Mirkin ◽  
Scarlett Miller ◽  
David Han ◽  
...  

Medical simulation plays a critical role in the training of surgical and medical residents. Training simulators give residents an environment to practice a wide variety of procedures where they can learn and make mistakes without harming a living patient [1]. In recent years, much research has been conducted on applying haptic or force feedback technology to surgical simulators in order to create more effective training devices [2]. Simulators such as the LapSim (laparoscopic simulator) and the PalpSim (palpitation needle insertion simulator) have both utilized haptic feedback arms to provide the physical sensation of performing surgical procedures to the user [3, 4]. The haptic simulator shown in Fig. 1 is currently in development. This virtual reality haptic robotic simulator for central venous catheterization (CVC) utilizes a haptic feedback arm to provide the feeling of a syringe being inserted into neck tissue [5]. Currently, there is little experimental data relating needle force to depth. To determine the forces necessary to program into the haptic robotic device, a force sensing syringe was developed and cadaver experiments were performed. This paper presents the development of a syringe which can accurately measure needle insertion force and the proceeding experiments conducted using this device on a fresh frozen cadaver. The results of these cadaver needle insertions are characterized into force profiles for needle insertion force that are implemented into the haptic based CVC simulator.


Author(s):  
Alireza Mirbagheri ◽  
Mohammadhasan Owlia ◽  
Mostafa Khabbazan ◽  
Mehdi Moradi ◽  
Fatemeh Mohandesi

Purpose: Lumbar Puncture (LP) is widely used for spinal and epidural anesthesia or Cerebrospinal fluid (CSF) sampling procedures. As this procedure is highly complicated and needs high experience to be performed correctly, it is necessary to teach this skill to the physicians. Considering the limitation of number of usage of rubber models and advantages of Virtual Reality (VR) environment for digital training of skills, we tried to investigate the capability of VR environment to train the LP procedures.with TLE. Materials and Methods: Geometrical model of the lumbar area of L2 to L5 are extracted from fusion of MR and CT imaging modalities. Also physical model of resistance of each layers against needle insertion at lumbar area are investigated through specially designed sensorized handle for LP needle and recorded from a 41-yearold female patient. Then geometrical and physical models of lumbar area are fused together and the Virtual Reality (VR) model of it, with insertion force rendering capability is extracted. Then the model is integrated with a haptic device and the complete VR environment is investigated. Results: In this work we introduced a robotic Lumbar Puncture Simulator (LP Sim) with force feedback which may be used for training the LP procedures .Using LP Sim, when the trainee insert the needle inside the lumbar area at the provided virtual reality environment, he/she may feel the insertion forces against his/her movement inside the lumbar area. Conclusion: The LP Sim is a virtual reality-enabled environment, with force feedback, that provides an appropriate framework for training this skill.


2021 ◽  
Vol 42 ◽  
pp. 107-112
Author(s):  
Daniela Coman ◽  
Lucian Gheorghe Gruionu

Needle insertion in biological tissue has attracted considerable attention due to its application in minimally invasive procedures such as laparoscopy or transcutaneous biopsy. In this paper the force of the Veress needle insertion into the abdominal wall and the von Mises stress were studied, demonstrating the ability of finite element models to provide additional understanding of the processes taking place. Veress needle insertion force may cause complications during surgery, the most common being vascular lesions, thus affecting the precision and duration of surgery assisted by a portable abdominal insufflation device. This study was the first step in developing a force feedback for needle insertion into the abdominal wall assisted by a portable abdominal insufflation device. The CAD model of the prototype of a portable abdominal insufflation device was made. Then the prototype of a portable abdominal insufflation device was developed. For testing purposes an artificial silicone model was made. The paper also includes the experimental results obtained by measuring the maximum pressure inside the artificial silicone model after the penetration of the wall.


2014 ◽  
Vol 4 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Vinit Singh ◽  
Swati Acharya ◽  
Satyabrata Patnaik ◽  
Smruti Bhusan Nanda

Introduction: During sliding mechanics, frictional resistance is an important counterforce to orthodontic tooth movement; whichmust be controlled to allow application of light continuous forces.Objective: To investigate static and kinetic frictional resistance between three orthodontic brackets: ceramic, self-ligating, andstainless steel, and three 0.019×0.025” archwires: stainless steel, nickel-titanium, titanium-molybdenum.Materials & Method: The in vitro study compared the effects of stainless steel, nickel-titanium, and beta-titanium archwires onfrictional forces of three orthodontic bracket systems: ceramic, self-ligating, and stainless steel brackets. All brackets had 0.022”slots, and the wires were 0.019×0.025”. Friction was evaluated in a simulated half-arch fixed appliance on a testing machine. Thestatic and kinetic friction data were analyzed with 1-way analysis of variance (ANOVA) and post-hoc Duncan multiple rangetest.Result: Self-ligating (Damon) brackets generated significantly lower static and kinetic frictional forces than stainless steel (Gemini)and ceramic brackets (Clarity). Among the archwire materials, Beta-titanium showed the maximum amount of frictional forceand stainless steel archwires had the lowest frictional force.Conclusion: The static and kinetic frictional force for stainless steel bracket was lowest in every combination of wire.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1234
Author(s):  
António Sérgio Silva ◽  
Aurora Carvalho ◽  
Pedro Barreiros ◽  
Juliana de Sá ◽  
Carlos Aroso ◽  
...  

Thermal and self-curing acrylic resins are frequently and versatilely used in dental medicine since they are biocompatible, have no flavor or odor, have satisfactory thermal qualities and polishing capacity, and are easy and fast. Thus, given their widespread use, their fracture resistance behavior is especially important. In this research work, we comparatively analyzed the fracture resistance capacity of thermo and self-curing acrylic resins in vitro. Materials and Methods: Five prosthesis bases were created for each of the following acrylic resins: Lucitone®, ProBase®, and Megacryl®, which were submitted to different forces through the use of the CS® Dental Testing Machine, usually mobilized in the context of fatigue tests. To this end, a point was defined in the center of the anterior edge of the aforementioned acrylic resin bases, for which the peak tended until a fracture occurred. Thermosetting resins were, on average, more resistant to fracture than self-curable resins, although the difference was not statistically significant. The thermosetting resins of the Lucitone® and Probase® brands demonstrated behavior that was more resistant to fracture than the self-curing homologues, although the difference was not statistically significant. Thermosetting resins tended to be, on average, more resistant to fracture and exhibited the maximum values for impact strength, compressive strength, tensile strength, hardness, and dimensional accuracy than self-curing resins, regardless of brand.


2015 ◽  
Vol 03 (02) ◽  
pp. 080-084
Author(s):  
Vijay Singh ◽  
Poonam Bogra ◽  
Saurabh Gupta ◽  
Navneet Kukreja ◽  
Neha Gupta

AbstractFracture resistance of endodontically treated teeth restored with post. Aims: This study aims to compare the fracture resistance of endodontically treated teeth restored with resin fiber and stainless steel post. Commercially available prefabricated resin fiber post(Dentsply Maillefer Easy Post), prefabricated stainless steel post(Coltene/Whaledent Parapost) were used. Methods and Material: Forty five maxillary central incisors were obturated and divided into 3 groups: Control Group (Group I) without any post (n = 15), Resin Fiber Post Group (Group II) (n = 15) and Stainless Steel Post Group (Group III) (n = 15). In all Groups except control group, post space was prepared; a post was cemented, and a core build-up was provided. All the specimens were subjected to compressive force under a universal testing machine until fracture. Statistical analysis used: The results were analyzed using the variable analysis test (ANOVA). Results: One-way analysis of variance revealed significant difference among test groups. The control group demonstrated highest fracture resistance (925.2183 N), followed by the resin fiber post group (486.7265 N) and stainless steel post group (423.539N). Conclusions: Teeth restored with resin fiber post showed higher fracture resistance values than prefabricated stainless steel post.


Sign in / Sign up

Export Citation Format

Share Document