scholarly journals Measurement of Syringe Needle Forces for a Haptic Robotic Training Device

Author(s):  
David Pepley ◽  
Mary Yovanoff ◽  
Katelin Mirkin ◽  
Scarlett Miller ◽  
David Han ◽  
...  

Medical simulation plays a critical role in the training of surgical and medical residents. Training simulators give residents an environment to practice a wide variety of procedures where they can learn and make mistakes without harming a living patient [1]. In recent years, much research has been conducted on applying haptic or force feedback technology to surgical simulators in order to create more effective training devices [2]. Simulators such as the LapSim (laparoscopic simulator) and the PalpSim (palpitation needle insertion simulator) have both utilized haptic feedback arms to provide the physical sensation of performing surgical procedures to the user [3, 4]. The haptic simulator shown in Fig. 1 is currently in development. This virtual reality haptic robotic simulator for central venous catheterization (CVC) utilizes a haptic feedback arm to provide the feeling of a syringe being inserted into neck tissue [5]. Currently, there is little experimental data relating needle force to depth. To determine the forces necessary to program into the haptic robotic device, a force sensing syringe was developed and cadaver experiments were performed. This paper presents the development of a syringe which can accurately measure needle insertion force and the proceeding experiments conducted using this device on a fresh frozen cadaver. The results of these cadaver needle insertions are characterized into force profiles for needle insertion force that are implemented into the haptic based CVC simulator.

Author(s):  
Adam Gordon ◽  
Inki Kim ◽  
Andrew C. Barnett ◽  
Jason Z. Moore

Percutaneous medical procedures rely upon clinicians performing precise needle insertion in soft tissue. The utility of haptic simulation systems in training clinicians for these procedures is highly dependent upon the ability to render accurate insertion force feedback. This paper presents a piecewise mathematical model for insertion force that does not require tissue material properties, detailed mechanical approximations, or complex computations. With manipulation of model parameters, a wide variety of insertion tasks and clinical scenarios can be modeled. Through needle insertion experiments and parameter estimation, this model was demonstrated to replicate the insertion forces associated with a variety of needle and tissue types. In 11 of 12 needle and tissue combinations tested, the model replicated the insertion force with an average absolute mean error of less than 0.065 N.


Author(s):  
Dailen Brown ◽  
Jessica M. Gonzalez-Vargas ◽  
David Han ◽  
Scarlett Miller ◽  
Jason Moore

Abstract An Incremental Needle Insertion System (INIS) which simultaneously measures the force and position of a needle during insertion was designed and fabricated for use in a tissue deformation study to improve realism in medical simulation. The INIS was tested in a fresh frozen cadaver experiment and the position of the needle was plotted and compared to the expected needle path. It was found that the INIS is sufficiently accurate with an average path deviation of 1.55 mm. In addition, INIS was shown to successfully measure the maximum Central Venous Catheterization needle insertion force which ranged from 3.02 N to 3.73 N.


2014 ◽  
Vol 14 (05) ◽  
pp. 1450076 ◽  
Author(s):  
SHAN JIANG ◽  
XINGJI WANG ◽  
ZHILIANG SU

Flexible needle insertion is performed in many clinical and brachytherapy procedures. Needle bending which results from needle–tissue interaction and needle flexibility plays a pivotal role in implantation accuracy. In this paper, a needle insertion force model and a mechanics-based needle deflection model are applied in simulating the real needle insertion process. Using tissue-equivalent materials, the needle force model is acquired from needle insertion experiments. Based on the principle of minimum potential energy, a mechanics-based model is developed to calculate needle deflection. The needle deflection model incorporates needle insertion forces model, needle–tissue interaction model, needle geometric, and tissue properties. The bending–stretching coupling and geometric non-linearity of the flexible needle are both taken into consideration in the needle deflection model. A modified p–y curves method is first introduced in depicting the lateral needle–tissue interaction. The comparison between experimental and simulation results of needle deflection shows that our mechanics-based model can simulate the deflection of the flexible needle with reasonable accuracy. Parametric studies on different geometry properties of needles show that our mechanics-based model can precisely predict the needle deflection when more than one parameter is changed. In addition, as the needle deflection results are obtained numerically by Rayleigh–Ritz approach, further study on the form of deflection formulation leads to the conclusion that choosing a higher order polynomial can improve the overall simulation accuracy.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041989107
Author(s):  
Yingchun Qi ◽  
Jingfu Jin ◽  
Tingkun Chen ◽  
Qian Cong

Lancet needle is a typical medical treatment device. Its tip consists of two lancet planes and one bevel plane. When the lancet needle is inserted into soft organ tissue, the insertion force may influence the needle cutting direction and treatment effect and increase the pain. One of the main factors affecting this insertion force is the geometry of the needle tip. Based on the research on the shape and processing method of the conventional lancet needle, a new lancet needle tip geometry was obtained by adjusting the relative position of the grinding wheel to the needle. A mathematical model of this new lancet needle was established. The relationship between processing parameters and needle shape was analyzed, and the needle insertion force was predicted. Compared with the conventional lancet needle, the new lancet needle is sharper, and the insertion force on the cutting edge is smaller. However, this change in the grinding position of the needle lancet plane has a great influence on the shape of needle tip near the intersection of the bevel plane and the lancet plane. Some special second bevel angle and rotated angle will cause a large change in the specific force at the intersection place, which is not conducive to reducing the insertion force.


Sign in / Sign up

Export Citation Format

Share Document