Experimental Study on Residual Cross-Sectional Flattening of Thin-Walled Pipes Under Pure Plastic Bending

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Ziqian Zhang

Abstract Cross-sectional ovalization (ovalization) usually occurs when thin-walled pipe is subjected to large plastic bending. This paper is concerned with residual deformation of thin-walled pipe's cross section in a radial direction when external bending moment is removed. In order to clarify the fundamental ovalization characteristics, find out what factors influence the residual flattening (value of ovalization), the ovalization behavior is investigated experimentally. The experiments are carried out on 21 stainless steel specimens with different geometric parameters under different bending radii by means of a four-point pure bending device. The residual cross-sectional flattenings are monitored continuously by scanning the cross section periodically along the circumferential direction. From the experimental results, it is observed that the cross-sectional shape of the thin-walled pipe is not perfect standard ellipse, and the appearance of the maximum residual flattening is usually found in the direction normal to the neutral surface. It is also revealed the relationships between the residual flattening and the bending radius, the wall thickness, and the pipe outer diameter, i.e., the residual flattening increases as the bending radius and the wall thickness reduce, but it increases as the outer diameter increases. These results are expected to find their potential application in thin-walled pipe bending operation.

2009 ◽  
Vol 83-86 ◽  
pp. 1107-1112
Author(s):  
J. Taheri Kahnamouei ◽  
Mohammad Sedighi

The aim of this paper is to survey thin-walled tube bending process (without use of mandrel and booster). In tube bending process there are several effective parameters such as wall thickness, outer diameter-to-wall thickness ratio, and centerline bending radius-to-outer diameter ratio. Any mismatch in selecting these parameters would cause defects like wrinkling, variation in wall thickness, and cross section distortion. Firstly, the effects of these parameters on the initiation of the wrinkle, depth of wrinkling, change in wall thickness, and cross section distortion are studied. For this purpose, an FE commercial code has been used to simulate the process. Then, a series of experimental tests have been carried out to verify the results simulation. A comparison between analytical and experimental results shows a reasonable agreement with each other. Based on this comparison, it has been observed that there is a critical bending radius for any tube with a certain radius and thickness, in which the wrinkling begins to occur. For a certain bending angle and radius, it have been observed that the depth of wrinkling, change in wall thickness, and cross section distortion increase with reduction in wall thickness and outer diameter-to-wall thickness ratio


1993 ◽  
Vol 115 (4A) ◽  
pp. 432-440 ◽  
Author(s):  
C. Ribreau ◽  
S. Naili ◽  
M. Bonis ◽  
A. Langlet

The topic of this study concerns principally representative models of some elliptical thin-walled anatomic vessels and polymeric tubes under uniform negative transmural pressure p (internal pressure minus external pressure). The ellipse’s ellipticity ko, defined as the major-to-minor axis ratio, varies from 1 up to 10. As p decreases from zero, at first the cross-section becomes somewhat oval, then the opposite sides touch in one point at the first-contact pressure pc. If p is lowered beneath pc, the curvature of the cross-section at the point of contact decreases until it becomes zero at the osculation pressure or the first line-contact pressure p1. For p<p1, the contact occurs along a straight-line segment, the length of which increases as p decreases. The pressures pc and p1 are determined numerically for various values of the wall thickness of the tubes. The nature of contact is especially described. The solution of the related nonlinear, two-boundary-values problem is compared with previous experimental results which give the luminal cross-sectional area (from two tubes), and the area of the mid-cross-section (from a third tube).


1964 ◽  
Vol 6 (3) ◽  
pp. 211-218 ◽  
Author(s):  
A. D. S. Barr ◽  
T. Duthie

Approximate differential equations describing the bending vibration of beams of thin-walled H section, in which the distortion of the cross-section in its own plane is taken into account, are derived from Hamilton's principle using an assumed form for the cross-section deformation. Only the simplest of the cross-sectional deformation configurations which will couple with ordinary bending is considered. The variation with wavelength of the two spectra of frequencies which result from this coupling of the bending and cross-sectional motions is shown for several section geometries. Theoretical curves show reasonable agreement with experimental results from free beams.


Author(s):  
Jalal Taheri Kahnamouei ◽  
Bashir Behjat

This paper investigates a method to avoid the wrinkling in thin-walled tubes in bending process. In the tube bending process there are several effective parameters such as wall thickness, outer diameter-to-wall thickness ratio, centerline bending radius-to-outer diameter ratio. Any mismatch in the selection of the process parameters would cause defects like wrinkling, serve changes in wall thickness, and cross section distortion. For example, the depth of wrinkling increases with reduction in wall thickness and outer diameter-to-wall thickness ratio for a certain bending angle and radius. In this research, to avoid wrinkle initiation, tube is filled by sand and then bended. This sandy core is supported the tube from inner, and tube is prepared to bending. After bending process, sand is removed. In this work, to study the process numerically, a 3D finite element model of the horizontal bending process is built using ANSYS software. Then, experimental tests have been carried out to verify the simulation results and are developed to provide additional insight. A comparison between numerical and experimental results shows a reasonable agreement. It shows that wrinkle initiation can be avoided with filler material like sand.


2013 ◽  
Vol 433-435 ◽  
pp. 2043-2053 ◽  
Author(s):  
Hidemitsu Hamano ◽  
Hisaki Watari

The cross-section shape change was investigated to determine the effects of proof stress, r value, wall thickness, and cross section in push-through bending of a square extruded pipe. Extruded A6063 aluminium alloy (40×40×2.0 mm) was used in the experiment. The push-through bending machine used has a six-axis NC controller. In this study, a two-dimensional single curvature shape was adopted in order to investigate the fundamental bending properties. A high-proof-stress material with severe bending workability was examined in this experiment to clarify the effect of bending workability on the material properties. Workability was evaluated by examining wrinkles and shape change of the cross section; the change in thickness was also evaluated, as were n and r values. The results are as follows. The high-proof-stress material was bent, resulting in significant cross-section deformation. The size of wrinkles caused by bending increased due to the large bending radius, and the wrinkles produced were deep. The effect of the r value on the cross-section deformation after bending could not be determined. In the present experiment range, the bending limit was determined by the size of wrinkles in internal bending. In A6063-T1, the wall thickness had a significant effect, and the forming limit of the thin-walled material was low. The bending limit was low for A6063-T5, and the effect of the wall thickness was slight. The bending limit of a 60×60mm cross-section piece was considerably lower than that of a 40×40 mm cross-section piece, for the same wall thickness; it was particularly significant in A6063-T5.


Author(s):  
Nathan S. Hosking ◽  
Zahra Sotoudeh

Modern helicopter blades are designed as thin-walled hollow structures in form of either C-spar or D-spar cross-sections. With the advent of new materials hollow designs have been implemented to reduce the overall weight of the structure. A D-spar is a rotor blade cross-section that is hollow in nature with a single vertical spar used to carry a large portion of the stresses otherwise carried by the skin [1]. The vertical spar is normally located between the leading edge and half of the chord length. The remaining volume aft of the vertical spar can either be hollow or filled with a honeycomb structure. The honeycomb structure increases the cross-sectional stiffness. Figure 1. shows an example of a common D-spar with a honeycomb structure aft of the vertical spar [2]. Due to new manufacturing methods the D-spar has now become common place in helicopter design [3]. A C-spar cross-section is very similar to the D-spar cross-section in design and construction. The C-spar cross-section does not have the honeycomb structure and the spar. The structural load is offset by more lamina layers towards the leading edge of the cross-section [4,5]. The thin-walled structure is comprised of many layers of composite materials such as fiberglass or carbon fibers. There has been extensive research into D-spar cross-section while there is a lack of studies for C-spar cross-sections [1,3,4].


2018 ◽  
Author(s):  
Sang Hoon Lee ◽  
Jeff Blackwood ◽  
Stacey Stone ◽  
Michael Schmidt ◽  
Mark Williamson ◽  
...  

Abstract The cross-sectional and planar analysis of current generation 3D device structures can be analyzed using a single Focused Ion Beam (FIB) mill. This is achieved using a diagonal milling technique that exposes a multilayer planar surface as well as the cross-section. this provides image data allowing for an efficient method to monitor the fabrication process and find device design errors. This process saves tremendous sample-to-data time, decreasing it from days to hours while still providing precise defect and structure data.


2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


2011 ◽  
Vol 47 (1) ◽  
pp. 115-135 ◽  
Author(s):  
Mariano González ◽  
Juan Nave ◽  
Gonzalo Rubio

AbstractThis paper explores the cross-sectional variation of expected returns for a large cross section of industry and size/book-to-market portfolios. We employ mixed data sampling (MIDAS) to estimate a portfolio’s conditional beta with the market and with alternative risk factors and innovations to well-known macroeconomic variables. The market risk premium is positive and significant, and the result is robust to alternative asset pricing specifications and model misspecification. However, the traditional 2-pass ordinary least squares (OLS) cross-sectional regressions produce an estimate of the market risk premium that is negative, and significantly different from 0. Using alternative procedures, we compare both beta estimators. We conclude that beta estimates under MIDAS present lower mean absolute forecasting errors and generate better out-of-sample performance of the optimized portfolios relative to OLS betas.


Sign in / Sign up

Export Citation Format

Share Document