Identification of Cavitation Instabilities on a Three-Bladed Inducer by Means of Strain Gages

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Ruzbeh Hadavandi ◽  
Giovanni Pace ◽  
Dario Valentini ◽  
Angelo Pasini ◽  
Luca d'Agostino

Abstract This paper reports the experimental characterization of the cavitation-induced flow instabilities of a high head three-bladed inducer at design condition detected simultaneously by means of piezoelectric pressure transducers located at different axial and azimuthal stations on the casing of the pump and strain gages mounted on the pressure side of each blade. The simultaneous analysis performed in the stationary and rotating frames, supported by high-speed movies, suggests that the mechanism of formation of the detected subsynchronous rotating cavitation resembles that of modal stall in compressors, being the cavitation region the source of compliance. In fact, at decreasing cavitation number, a strong attached cavitation, developed preferentially on one blade and capable of completely surrounding and unloading the following blade, starts to be destabilized as consequence of the progressive intensification of a modal oscillation. The developed complex instability, consisting in a strong oscillation of the attached cavitation, is detected in both the frames as the simultaneous presence of a subsynchronous rotating cavitation and a cavitation surge.

Author(s):  
Ruzbeh Hadavandi ◽  
Giovanni Pace ◽  
Dario Valentini ◽  
Angelo Pasini ◽  
Luca d’Agostino

The present paper reports the experimental characterization of the cavitation induced flow instabilities of a high head three-bladed inducer at design condition detected simultaneously by means of piezoelectric pressure transducers located at different axial and azimuthal stations on the casing of the pump and through strain gages mounted on the pressure side of each blade. The purpose of this experimental campaign is a deeper insight of the phenomena associated to the flow instabilities obtained by the simultaneous analysis performed in the stationary and rotating frames. Both the sensors set-ups proved to be able to detect the main flow instabilities such as synchronous and sub-synchronous rotating cavitation, cavitation surge and tip vortex instability. Moreover, the simultaneous analysis of the results supported by high speed movie has allowed for assessing the mutual relations between the instabilities.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Giovanni Pace ◽  
Dario Valentini ◽  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Luca d'Agostino

The paper describes the results of recent experiments carried out in the Cavitating Pump Rotordynamic Test Facility for the dynamic characterization of cavitation-induced flow instabilities as simultaneously observed in the stationary and rotating frames of a high-head, three-bladed axial inducer with tapered hub and variable pitch. The flow instabilities occurring in the eye and inside the blading of the inducer have been detected, identified, and monitored by means of the spectral analysis of the pressure measurements simultaneously performed in the stationary and rotating frames by multiple transducers mounted on the casing near the inducer eye and on the inducer hub along the blade channels. An interaction between the unstable flows in the pump inlet and in the blade channels during cavitating regime has been detected. The interaction is between a low frequency axial phenomenon, which cyclically fills and empties each blade channel with cavitation, and a rotating phenomenon detected in the inducer eye.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
K. Balaji ◽  
V. Sivadas ◽  
Vishnu Radhakrishna ◽  
Khushal Ashok Bhatija ◽  
K. Sai Charan

The present study focuses on experimental characterization of interfacial instability pertinent to liquid jet and liquid sheet in the first wind-induced zone. To accomplish this objective, the interfacial wave growth rate, critical wave number, and breakup frequency associated with air-assisted atomizer systems were extracted by utilizing high-speed flow visualization techniques. For a range of liquid to gas velocities tested, nondimensionalization with appropriate variables generates the corresponding correlation functions. These functions enable to make an effective comparison between interfacial wave developments for liquid jet and sheet configurations. It exhibits liquid sheets superiority over liquid jets in the breakup processes leading to efficient atomization.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
V. Sivadas ◽  
K. Balaji ◽  
Antriksha Vishwakarma ◽  
Sundar Ram Manikandan

Abstract The study focuses on experimental characterization of the primary atomization associated with an effervescent atomizer. Unlike the existing designs available in the literature that inject air perpendicular to the liquid flow direction, the present atomizer design utilizes coflowing air configuration. In doing so, the aerodynamic shear at the liquid–gas interface create instability and enhance the subsequent jet breakup. Both integrated and intrinsic properties of the liquid jet were extracted by utilizing high-speed flow visualization techniques. The integrated property consists of breakup length, while the intrinsic property involves primary and intermediate breakup frequencies. The primary instability is characterized by low-frequency sinusoidal mode, whereas the intermediate instability consists of high-frequency dilatational mode. Dimensionless plots of these parameters with Weber number ratio leads to a better collapse of data, thereby generating appropriate universal functions. The combined diagram of frequencies converge with increasing relative velocity. This may be due to the dominance of energy consuming sinusoidal wave as the aerodynamic shear increases.


2021 ◽  
Author(s):  
Avinash Renuke ◽  
Federico Reggio ◽  
Alberto Traverso ◽  
Matteo Pascenti

Abstract Multi-disk bladeless turbines, also known as Tesla turbines, are promising in the field of small-scale power generation and energy harvesting due to their low sensitivity to down-scaling effects, retaining high rotor efficiency. However, low (less than 40%) overall isentropic efficiency has been recorded in the experimental literature. This article aims for the first time to a systematic experimental characterization of loss mechanisms in a 3-kW Tesla expander using compressed air as working fluid and producing electrical power through a high speed generator (40krpm). The sources of losses discussed are: stator losses, stator-rotor peripheral viscous losses, end wall ventilation losses and leakage losses. After description of experimental prototype, methodology and assessment of measurement accuracy, the article discusses such losses aiming at separating the effects that each loss has on the overall performance. Once effects are separated, their individual impact on the overall efficiency curves is presented. This experimental investigation, for the first time, gives the insight into the actual reasons of low performance of Tesla turbines, highlighting critical areas of improvement, and paving the way to next generation Tesla turbines, competitive with state of the art bladed expanders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zu Puayen Tan ◽  
Lokesh Silwal ◽  
Surya P. Bhatt ◽  
Vrishank Raghav

AbstractContact and inhalation of virions-carrying human aerosols represent the primary transmission pathway for airborne diseases including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Relative to sneezing and coughing, non-symptomatic aerosol-producing activities such as speaking are highly understudied. The dispersions of aerosols from vocalization by a human subject are hereby quantified using high-speed particle image velocimetry. Syllables of different aerosol production rates were tested and compared to coughing. Results indicate aerosol productions and penetrations are not correlated. E.g. ‘ti’ and ‘ma’ have similar production rates but only ‘ti’ penetrated as far as coughs. All cases exhibited a rapidly penetrating “jet phase” followed by a slow “puff phase.” Immediate dilution of aerosols was prevented by vortex ring flow structures that concentrated particles toward the plume-front. A high-fidelity assessment of risks to exposure must account for aerosol production rate, penetration, plume direction and the prevailing air current.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
J. Dodds ◽  
M. Vahdati

In this two-part paper, the phenomenon of part span rotating stall is studied. The objective is to improve understanding of the physics by which stable and persistent rotating stall occurs within high speed axial flow compressors. This phenomenon is studied both experimentally (Part I) and through the use of unsteady RANS simulations (Part II). In this paper, the behavior of an eight stage high speed compressor is studied during slow acceleration maneuvres along a fixed working line. Casing mounted pressure transducers and rotor mounted strain gages are used to examine the spectral content of any unsteadiness in the flow and its behavior across the operating range. By deliberate aerodynamic mismatching of the front stages through adjustment of three rows of variable stator vanes (VSVs), stable rotating stall is initiated. The observed behavior falls into two “families” of high and low frequency when tracked on the instrumentation. Further analysis based on the Doppler shift between the static and rotating measurements confirms that these respective phenomena are due to rotating stall of high and low cell count. Acoustic modes resulting from stall/rotor interaction are also identified. Strong correlation of the stall intensity with simple 1D meanline predicted loading parameters suggests that these families of behavior are independently linked to the stalling of different regions within the compressor.


Sign in / Sign up

Export Citation Format

Share Document