Multiscale Parallelized Computational Fluid Dynamics Modeling Toward Resolving Manufacturable Roughness

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Marios Kapsis ◽  
Li He ◽  
Yan Sheng Li ◽  
Omar Valero ◽  
Roger Wells ◽  
...  

Abstract Typical turbomachinery aerothermal problems of practical interest are characterized by flow structures of wide-ranging scales, which interact with each other. Such multiscale interactions can be observed between the flow structures produced by surface roughness and by the bulk flow patterns. Moreover, additive manufacturing (AM) may sooner or later open a new chapter in the way components are designed by granting designers the ability to control the shape and patterns of surface roughness. As a result, surface finish, which so far has been treated largely as a stochastic trait, can be shifted to a set of design parameters that consist of repetitive, discrete micro-elements on a wall surface (“manufacturable roughness”). Considering this prospective capability, the question would arise regarding how surface microstructures can be incorporated in computational analyses during designing in the future. Semi-empirical methods for predicting aerothermal characteristics and the impact of manufacturable roughness could be used to minimize computational cost. However, the lack of element-to-element resolution may lead to erroneous predictions, as the interactions among the roughness micro-elements have been shown to be significant for adequate performance predictions (Kapsis and He, 2018, “Analysis of Aerothermal Characteristics of Surface Micro-Structures,” ASME J. Fluids Eng., 140(5), p. 051104). In this paper, a new multiscale approach based on the novel block spectral method (BSM) is adopted. This method aims to provide efficient resolution of the detailed local flow variation in space and time of the large-scale microstructures. This resolution is provided without resorting to modeling every single ones in detail, as a conventional large-scale computational fluid dynamics (CFD) simulation would demand, but still demonstrating similar time-accurate and time-averaged flow properties. The main emphasis of this work is to develop a parallelized solver of the method to enable tackling large problems. The work also includes a first of the kind verification and demonstration of the method for wall surfaces with a large number of microstructured elements.

Author(s):  
Marios Kapsis ◽  
Li He ◽  
Yan Sheng Li ◽  
Roger Wells ◽  
Omar Valero ◽  
...  

Abstract Typical turbomachinery aerothermal problems of practical interest are characterised by flow structures of wide-ranging scales, which interact with each other. Such multi-scale interactions can be observed between the flow structures produced by surface roughness and by the bulk flow patterns. Moreover, additive manufacturing may sooner or later open a new chapter in component designs by granting designers the ability to control the surface roughness patterns. As a result, surface finish, which so far has been treated largely as a stochastic trait, can be shifted to a set of design parameters that consist of repetitive, discrete micro-elements on a wall surface (‘manufacturable roughness’). Considering this prospective capability requirement, the question would arise regarding how surface micro-structures can be incorporated in computational analyses during a design phase in the future. Semi-empirical methods for predicting aerothermal characteristics and the impact of manufacturable roughness could be used to minimise computational cost. However, the lack of element-to-element resolution may lead to erroneous predictions, as the interactions among the roughness micro-elements have been shown to be significant for adequate performance predictions [1]. In this paper a new multi-scale approach based on the novel Block Spectral method is adopted. This method aims to provide efficient resolution of the detailed local flow variation in space and time of the large scale micro-structures. This resolution is provided without resorting to modelling every single ones in detail, as a conventional large scale CFD simulation would demand, but still demonstrating similar time-accurate and time-averaged flow properties. The main emphasis of the present work is to develop a parallelised solver of the method to enable tackling large problems. The work also includes a first of the kind verification and demonstration of the method for wall surfaces with a large number of micro-structured elements.


Author(s):  
Syed Naveed Ahmed ◽  
P. Ravinder Reddy ◽  
Sriram Venkatesh

The compressor disks of an aircraft engine which operate at very high rotational speeds are exposed to significant temperature gradients. These temperature gradients induce thermal stresses into the rotating disks which along with the existing dynamic stresses significantly reduce their useful field life. Hence it becomes essential to reduce the disk temperature gradients by utilizing a certain percentage of the compressor core flow known as the secondary flow for either heating or cooling these rotating parts. But this extraction of the compressor core flow results in a higher engine fuel burn for a given engine thrust.  Hence the need arises for a better utilization of the secondary flow to effectively reduce the temperature gradients of the rotating compressor disks. As the secondary flow thermal phenomenon  inside the rotating compressor disk cavities is very complex and due to it’s direct impact on the  life expectancy of the disks it becomes critical to understand it’s  thermo-fluid behaviour by the effective use of available Computational Fluid Dynamic tools. In the current study the secondary flow through the compressor disk cavities is simulated using Computational Fluid Dynamics (CFD) and the results are analysed and reported. The analysis of these results help in a better understanding of the distribution of the flow and the variations of the thermal fluid parameters across the secondary flow system. These results are also later used as thermal boundary conditions in the Finite Element model (FEM) to study the impact of various engine design parameters on the disk temperature gradients after being validated by the experimental results. The findings from this computer aided investigation offers support in make design improvements aimed at lowering the disk temperature gradients and enhancing their useful field life


Author(s):  
J. Foroozesh ◽  
F. Parvaz ◽  
S.H. Hosseini ◽  
G. Ahmadi ◽  
K. Elsayed ◽  
...  

Author(s):  
Yash Shinde

Abstract: Over the evolution of automobiles, performance, mileage, and grip have dramatically improved. Nevertheless, there have been some improvements, but now the ideal design has been reached for design of engine, airflow & tires, & ergonomics. This means that even very small design improvements could result in high performance enhancements. As fuel is becoming more expensive, the need for improved aerodynamics is becoming more acute. Thus, the purpose of this paper is to examine the effect of golf-like dimples on the aerodynamic properties of a spoiler. As such, numerical calculations and computational fluid dynamics calculations were performed to investigate the impact on aerodynamics and turbulence spoilers with various surface roughness and angle of attack. Based on the recorded data, this test will provide the best information on the appropriate size for the dimple. The data collected on the test model will be used to calculate the drag coefficient, the downforce, and the wake produced at 56 m/s speed, at four different attack angles. Different sizes & depths of dimples will be used to improve the aerodynamics of spoilers, which will improve their downforce, drag force and wake formation. Keywords: spoiler, aerodynamics, dimples, downforce, aerodynamic forces


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
D. Benzon ◽  
A. Židonis ◽  
A. Panagiotopoulos ◽  
G. A. Aggidis ◽  
J. S. Anagnostopoulos ◽  
...  

This study utilizes two modern computational fluid dynamics (CFD) software packages (ansys®cfx® and ansys®fluent®) to analyze the basic geometric factors affecting the efficiency of a typical impulse turbine injector. A design of experiments (DOEs) study is used to look at the impact of four primary nozzle and spear design parameters on the injector losses over a range of inlet pressures. Improved injector designs for both solvers are suggested based on the results and comparisons are made. The results for both CFD tools suggest that steeper injector nozzle and spear angles than current literature describes will reduce the losses by up to 0.6%.


Soft Matter ◽  
2020 ◽  
Vol 16 (26) ◽  
pp. 6191-6205 ◽  
Author(s):  
Fabio Guglietta ◽  
Marek Behr ◽  
Luca Biferale ◽  
Giacomo Falcucci ◽  
Mauro Sbragaglia

Computational Fluid Dynamics is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of RBCs at the mesoscale.


Author(s):  
Praween Senanayake ◽  
Hana Salati ◽  
Eugene Wong ◽  
Kimberley Bradshaw ◽  
Yidan Shang ◽  
...  

Author(s):  
Paulo Yu ◽  
Vibhav Durgesh

An aneurysm is an abnormal growth in the wall of a weakened blood vessel, and can often be fatal upon rupture. Studies have shown that aneurysm shape and hemodynamics, in conjunction with other parameters, play an important role in growth and rupture. The objective of this study was to investigate the impact of varying inflow conditions on flow structures in an aneurysm. An idealized rigid sidewall aneurysm model was prepared and the Womersley number (α) and Reynolds number (Re) values were varied from 2 to 5 and 50 to 250, respectively. A ViVitro Labs pump system was used for inflow control and Particle Image Velocimetry was used for conducting velocity measurements. The results showed that the primary vortex path varied with an increase in α, while an increase in Re was correlated to the vortex strength and formation of secondary vortical structures. The evolution and decay of vortical structures were also observed to be dependent on α and Re.


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


Sign in / Sign up

Export Citation Format

Share Document