Impaired Driver Assistance Control With Gain-Scheduling Composite Nonlinear Feedback for Vehicle Trajectory Tracking

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Yimin Chen ◽  
Chuan Hu ◽  
Junmin Wang

Abstract Impaired drivers have deteriorated driving performances that may greatly endanger the road safety. It is challenging to design assistance controllers for the impaired drivers because the impaired driver behaviors are difficult to be modeled and considered in the controller design. To this end, this paper proposes a gain-scheduling composite nonlinear feedback (GCNF) controller to assist the impaired drivers. A driver-vehicle system containing the impaired driver model is developed. The steering behaviors of the impaired drivers are described by deteriorating the driver model parameters and including the driver uncertainties. Based on the driver-vehicle system, a GCNF controller integrating the gain-scheduling technique, the weighted H∞ performance, and the composite nonlinear feedback algorithm is designed to handle the declined driving performances and improve the transient performances. The designed GCNF controller is validated in the carsim simulations. The simulation results show that the GCNF controller can effectively assist the impaired drivers of different impaired levels to reduce the trajectory tracking errors and improve the driving performances.

Author(s):  
Yuanyan Chen ◽  
J. Jim Zhu

A car-like ground vehicle is a nonlinear and underactuated system subject to nonholonomic constraints. Trajectory tracking control of such systems is a challenging problem. To this end, a trajectory tracking controller based on nonlinear kinematics and dynamics model of a ground vehicle by Trajectory Tracking Control (TLC) is presented in our previous work. In this paper, we present hardware validation of TLC controller design with vehicle parameters determination for a Radio Controlled (RC) scaled model vehicle, experimental implementation, and tuning procedure. Hardware testing results are presented to demonstrate the effectiveness of our design. The design can be readily scaled-up to full-size vehicles and adapted to different types of autonomous ground vehicles with only knowledge of the vehicle model parameters.


Author(s):  
Sonal Singh ◽  
Shubhi Purwar

Background and Introduction: The proposed control law is designed to provide fast reference tracking with minimal overshoot and to minimize the effect of unknown nonlinearities and external disturbances. Methods: In this work, an enhanced composite nonlinear feedback technique using adaptive control is developed for a nonlinear delayed system subjected to input saturation and exogenous disturbances. It ensures that the plant response is not affected by adverse effect of actuator saturation, unknown time delay and unknown nonlinearities/ disturbances. The analysis of stability is done by Lyapunov-Krasovskii functional that guarantees asymptotical stability. Results: The proposed control law is validated by its implementation on exothermic chemical reactor. MATLAB figures are provided to compare the results. Conclusion: The simulation results of the proposed controller are compared with the conventional composite nonlinear feedback control which illustrates the efficiency of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document