A Novel Omnidirectional Self-Locked Energy Absorption System Inspired by Windmill

2020 ◽  
Vol 87 (8) ◽  
Author(s):  
Yizhe Liu ◽  
Feng Xiong ◽  
Kuijian Yang ◽  
Yuli Chen

Abstract Impact accidents cause great damage to lives and properties because the destructiveness, direction, and action mode of impact loadings can hardly be predicted. Ordinary thin-walled tube systems for energy absorption require outside constraints or inside fasteners to avoid tube splashing, which affects the modifiability of the systems and limits their application in emergencies. In an effort to break through this limitation, inspired by windmill, a novel omnidirectional self-locked energy absorption system has been proposed. The proposed system is made up of thin-walled tubes with windmill-liked cross section, which are specially designed to interlock with adjacent tubes and thus provide constraints among individual tubes to resist impact loadings in spatial arbitrary directions. The spatial omnidirectional self-locking capability of the windmill-inspired system is demonstrated under distributed and concentrated impact loadings. Moreover, the windmill-inspired system shows higher energy absorption efficiency than that of the widely used round tube system and previous self-locked system under loadings in various directions, and their energy absorption properties can be further improved by combining with the round tube system, adjusting the geometric parameter of each tube and designing the arrangement of tubes with different properties in the system. This work may shed light on the energy absorption system design and expand the application of self-locked energy absorption systems.

Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


2014 ◽  
Vol 622-623 ◽  
pp. 709-716 ◽  
Author(s):  
Majid Elyasi ◽  
Amin Moradpour ◽  
Saharnaz Montazeri

Thin-walled tubes have always considered as energy absorption systems by researchers. This paper presents a new technique for energy absorption system which is simpler than other designs in production. This novel model is a thin-walled tube with perforation. During manufacturing process, equal numbers of holes are created in rows and columns in order to increase the energy absorption ability. In this article two different workpieces with the same geometry, one with holes and the other one with grooves, are compared to validate the model in accordance with other presented ones. For this purpose, specimens were modeled in finite element software ABAQUS with the same conditions and the amount of energy absorption, the initial decay, and the weight ratio of energy absorption (SEA) were evaluated. Then results which obtained from simulation are compared with experimental ones. Results confirmed that specimens with perforation have better decay symmetry rather than ones with grooves. In addition, force absorption in workpieces with hole is as twice as ones with grooves. The amounts of absorbed energy and SEA in workpieces with perforation are 56% and 46% more than workpieces with grooves, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Junxian Zhou ◽  
Chuang Dong ◽  
Bingzhi Chen ◽  
Xu Niu

An improved pyramidal prefolded pattern was designed and applied to thin-walled tubes. This delicately designed pattern modularizes the tube to control the folding process and act as an inducer to trigger deformation modes with outstanding crushing performance. Dynamic crushing tests were conducted numerically; the simulation results reveal that the patterned square tube developed a deformation mode with shorter wavelength, better load consistencies, and higher energy-absorption efficiency (up to 29%) than that of the traditional counterpart. Moreover, geometric analysis was performed and structural improvements were conducted by applying the optimal geometric parameters onto an octagonal profile. The designed patterned octagonal tube collapsed into a highly efficient deformation mode known as diamond mode. Furthermore, the comparative results show that patterned octagonal tubes demonstrated an energy absorption up to 90.1% higher than that of a conventional square column while improving the geometric compliance. These findings enrich research on patterned tubes and provide new explorations for the development of high-performance energy-absorbing structures.


Author(s):  
Mingzhe Li ◽  
Bang He ◽  
Saeed Barbat ◽  
Sihao Gu ◽  
Weiyi Lu

Thin-walled metal tubes have been widely used as energy absorbers to mitigate adverse effects of impact and protect structures and facilities. However, once the initial buckling stress of the tube is reached, the post-buckling plateau of the tube has a much reduced average stress which determines the energy absorption efficiency of the empty tube. As a result, the real energy absorption efficiency of the thin-walled tube is much lower than the theoretical limit which is proportional to the value of initial buckling stress. We hypothesize that by filling thin-walled tubes with the novel liquid nanofoam (LN), (i) the energy absorption efficiency of the hybrid structure can reach the theoretical limit, and (ii) the main working mechanism is the effect of solid-liquid interaction on tube buckling. To test these hypotheses, we have characterized the energy absorption efficiency of LN filled steel tubes by using quasi-static compression tests and dynamic impacts. The quasi-static behavior of LN filled tubes is characterized by an Instron 5982 universal tester. Results show that the gravimetric and volumetric energy absorption efficiencies of LN filled steel tubes are 20% and 220% higher than the values of empty tubes, respectively. This is due to the changed buckling mode and the promoted post-buckling stress of the hybrid structure by the highly compressible LN. The dynamic behavior of LN filled tubes is characterized by a dynamic impact test (∼3 m/s) with a lab-customized drop tower apparatus. It is found that both the gravimetric and volumetric energy absorption efficiencies of LN filled tubes are further increased by 16%. The strain rate dependent behavior of LN filled tubes must be attributed to the solid-liquid interaction between the LN and the steel tube wall, which is further verified by comparing the mechanical behaviors of LN filled tubes with solid foams filled tubes. Our experimental results have demonstrated that the energy absorption efficiency of thin-walled tubes are significantly improved by the LN filler especially at higher strain rates. This hybrid structure may have a potential for future use in the design of light-weight and small scale cellular structures for vehicle safety and crashworthiness.


2018 ◽  
Vol 777 ◽  
pp. 569-574
Author(s):  
Zhong You Xie

Due to thin skins and soft core, it is apt to local indentation inducing the concurrence of geometrical and material nonlinearity in sandwich structures. In the paper, finite element simulation is used to investigate the bending behavior of lightweight sandwich beams under large deflection. A modified formulation for the moment at mid-span section of sandwich beams under large deflection is presented, and energy absorption performance is assessed based on energy absorption efficiency. In addition, it is found that no local indentation arises initially, while later that increases gradually with loading displacement increasing. The height of the mid-span section as well as load-carrying capacity decreases significantly with local indentation depth increasing.


Sign in / Sign up

Export Citation Format

Share Document