Magnetohydrodynamic Moving Liquid Plug Within a Microchannel: Analytical Solutions

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Mustafa Turkyilmazoglu

Abstract The wide applications of plug flows in microscale in science and engineering help them attract a great deal recent interest. An analytical study is undertaken here to study the impacts of a transversely applied external uniform magnetic field affecting the motion of liquid in the plug in terms of hydrodynamic mixing properties. The well-known symmetric vortex structure occurring in a long plug with moderate aspect ratio is observed to be preserved, while the recirculation phenomenon is highly affected by the action of the magnetic field. The decelerating feature of Lorentz force on the liquid motion is illuminated by reducing the strength of the recirculating vortex moving towards the upper and lower walls. The effects of magnetic field on the flow resistance of the liquid plug as well as on the plug circulation rate and on the axial flux are also clarified. The liquid plug considered here is shown to be fully consistent with the continuous liquid flow in a channel whose exact solution is further extracted.

Author(s):  
Haim H. Bau ◽  
Jianzhong Zhu ◽  
Shizhi Qian ◽  
Yu Xiang

The magneto hydrodynamic fluidic network’s basic building blocks are conduits equipped with two electrodes positioned on opposing walls. The entire device is either subjected to an external uniform magnetic field or fabricated within a magnetic material. When a prescribed potential difference is applied across each electrode pair, it induces current in the liquid (assumed to be a weakly conductive). The current interacts with the magnetic field to produce a Lorentz force that is perpendicular to both the directions of the current and the magnetic field. Analogously with electric circuits, by judicious application of the potential differences at various branches, one can direct liquid flow in any desired way and rate without a need for mechanical pumps or valves. By equipping the network branches with additional, interior electrodes, the branches double as stirrers capable of generating chaotic advection. The paper describes the basic building blocks for such a network, the operation of these branches as stirrers, a general theory for the analysis and control of fluidic magneto-hydrodynamic networks, and an example of a network fabricated with low temperature, co-fired ceramic tapes.


2015 ◽  
Vol 30 (20) ◽  
pp. 1550099
Author(s):  
Yu. A. Sitenko

Charged massive matter fields of spin-0 and spin-[Formula: see text] are quantized in the presence of an external uniform magnetic field in a spatial region bounded by two parallel plates. The most general set of boundary conditions at the plates, that is required by mathematical consistency and the self-adjointness of the Hamiltonian operator, is employed. The vacuum fluctuations of the matter field in the case of the magnetic field orthogonal to the plates are analyzed, and it is shown that the pressure from the vacuum onto the plates is positive and independent of the boundary condition, as well as of the distance between the plates. Possibilities of the detection of this new-type Casimir effect are discussed.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4295
Author(s):  
Brahim Chelarem Douma ◽  
Bilal Abderezzak ◽  
Elhadj Ailam ◽  
Raluca-Andreea Felseghi ◽  
Constantin Filote ◽  
...  

In this work, authors have designed, constructed and tested a new kind of partially superconducting axial flux machine. This model is based on the magnetic flux concentration principle. The magnetic field creation part consists of the NbTi superconducting solenoid and two YBaCuO plates. A theoretical study is conducted of an extrapolated superconducting inductor for low-temperature superconducting and high-temperature superconducting solenoids. The optimization of the inductor is carried out in order to increase the torque and the power density as well. This improvement is done by changing the shape of the elements which form the superconducting inductor. Finally, a prototype is realized, and tested.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaoting Zhang ◽  
Bingyi Zhang

In this study, an analytical model is established to efficiently compute the magnetic field and unbalanced magnetic pull (UMP) in axial-flux permanent-magnet motors (AFPMMs). The effects of stator slotting, end effect, and rotor eccentricity on the magnetic field and forces were investigated. Static and dynamic eccentricities are analyzed and considered in the model. An effective function of the air gap permeance was introduced for effect of the stator slots to compute the flux density. A specific coefficient function is defined to calculate the end effect. A Fourier transform is used to compute the variations of the permanent-magnet remanence and the air gap permeance due to the slotted stator opposite to a slotless stator. The unbalanced magnetic forces were evaluated as a function of the air gap magnetic field using analytical equations. The proposed analytical method dramatically reduces the model size and computational time. It can be applied to the analysis of AFPMMs and is much faster than the three-dimensional finite element method (FEM). By comparing with the obtained using the FEM, the model results are validated.


Author(s):  
James Julian ◽  
Fitri Wahyuni ◽  
Lomo Mula Tua ◽  
Nely Toding Bunga

In the current technological development, the electric motor is the most popular in various industrial applications. Electric motors today have evolved very quickly and have a significant impact on the lives of the wider community. The use of environmentally friendly and efficient energy is one of the reasons why this motorbike has become a pioneer of technological advances, especially in the automotive world. This research focuses on conducting a comprehensive analytical study on one type of electric motor, namely synchronous because it is widely applied in various conditions today. The analysis was carried out using a computational method by applying the finite element as a method of solving the magnetic field case involving Maxwell's equations and its impact on the torque generated in this synchronous motor. From the computation results, it is found that this synchronous motor does have a high torque when the magnetic field flux works constantly at 0.015 Wb. With an average torque generated by this synchronous motor of 1.5 kW.


Sign in / Sign up

Export Citation Format

Share Document