A Magneto-Hydrodynamic Micro Fluidic Network

Author(s):  
Haim H. Bau ◽  
Jianzhong Zhu ◽  
Shizhi Qian ◽  
Yu Xiang

The magneto hydrodynamic fluidic network’s basic building blocks are conduits equipped with two electrodes positioned on opposing walls. The entire device is either subjected to an external uniform magnetic field or fabricated within a magnetic material. When a prescribed potential difference is applied across each electrode pair, it induces current in the liquid (assumed to be a weakly conductive). The current interacts with the magnetic field to produce a Lorentz force that is perpendicular to both the directions of the current and the magnetic field. Analogously with electric circuits, by judicious application of the potential differences at various branches, one can direct liquid flow in any desired way and rate without a need for mechanical pumps or valves. By equipping the network branches with additional, interior electrodes, the branches double as stirrers capable of generating chaotic advection. The paper describes the basic building blocks for such a network, the operation of these branches as stirrers, a general theory for the analysis and control of fluidic magneto-hydrodynamic networks, and an example of a network fabricated with low temperature, co-fired ceramic tapes.

The stability of viscous flow between two coaxial cylinders maintained by a constant transverse pressure gradient is considered when the fluid is an electrical conductor and a uniform magnetic field is impressed in the axial direction. The problem is solved and the dependence of the critical number for the onset of instability on the strength of the magnetic field and the coefficient of electrical conductivity of the fluid is determined.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 467
Author(s):  
Fayçal Hammad ◽  
Alexandre Landry ◽  
Parvaneh Sadeghi

The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed.


2021 ◽  
Author(s):  
Zachary P. Belyaev ◽  
Samuel N. Downes ◽  
Philip A. Voglewede

Abstract Mechanical components, such as springs, dampers and mass, alter and influence an engineered system’s motion based upon a system’s position, velocity and acceleration, respectively. This paper aims to discover and develop another element (dubbed the damper) which provides a force proportional to a system’s jerk (i.e., the derivative of acceleration) to better engineer a system’s response. By utilizing the known applications of jerk in motion planning and control theory, existing possible physical implementations and uses of jerk and the jerk element are discussed in relation to its influence on the system’s response, specifically vibration. Using a Buckingham Pi approach, the theoretical background of the jerk element is presented and possible physical parameters are combined to show how the jerk element could be created from common elements and parameters. The most promising approach of varying the magnetic field of existing magneto-rheological dampers is developed to give an example of the jerk element along with the difficulties and concerns in developing the jerk element. This paper serves less of a purpose towards answering all questions of the jerk element, but rather focuses more on posing the appropriate questions which sets the stage for an easily realizable future jerk element which can improve system performance.


2018 ◽  
Vol 185 ◽  
pp. 09006
Author(s):  
Alexander Tyatyushkin

Small steady-state deformational oscillations of a drop of magnetic liquid in a nonstationary uniform magnetic field are theoretically investigated. The drop is suspended in another magnetic liquid immiscible with the former. The Reynolds number is so small that the inertia can be neglected. The variation of the magnetic field is so slow that the quasi-stationary approximation for the magnetic field and the quasi-steady approximation for the flow may be used.


Author(s):  
Rajesh Nimmagadda ◽  
Durga Prakash Matta ◽  
Rony Reuven ◽  
Lazarus Godson Asirvatham ◽  
Somchai Wongwises ◽  
...  

Abstract A 2D numerical investigation has been carried out to obtain the heat transfer performance of hybrid (Al2O3 + Ag) nanofluid in a lid driven cavity over solid block under the influence of uniform as well as non-uniform magnetic field. The geometrical domain consists of a cavity containing nanofluid that is driven by means of lid moving in one direction. This circulating nanofluid will extract enormous amount of heat from the solid block underneath the cavity resulting in conjugate heat transfer. A homogenous solver based on the finite volume method with conjugate heat transfer was developed and adopted in the existing study. The heat efficient hybrid nanofluid (HyNF) pair (2.4 vol.% Ag + 0.6 vol.% Al2O3) obtained by Nimmagadda and Venkatasubbaiah [1] is used in the present investigation. Moreover, efficient non-uniform sinusoidal magnetic field identified by Nimmagadda et al. [2] is also implemented and compared with uniform magnetic field. Furthermore, the magnetic field is applied over the geometrical domain along the two axial directions separately and the effective heat transfer performance is obtained. The significant impact of extensive parameters like Reynolds number, nanoparticle type, nanoparticle concentration, magnetic field type, magnetic field location and the strength of the magnetic field on heat transfer performance are systematically analyzed and presented.


2012 ◽  
Vol 472-475 ◽  
pp. 912-916
Author(s):  
Ding Guo Huang ◽  
Song Liu ◽  
Hong Guang Jiao ◽  
Fei Yue Wang

This new dry magnetic separator has a special structure. It has many magnetic roll which are staggered like a stairsteps. It can finish the task of separating different minerals with only this one machine. And also it can make the different magnetic material which are in the same mineral separate at the same time. The permanent magnet system is made of large fan-shaped magnet. The magnet pole N and S are staggered and has perfect performance of magnetic separation. And the magnetic force is made full use by going-up dynamic separation. And also it gives an analysis of stress in the magnetic field. It also shows that its separation idex is better, the economic benefits are obvious, and it has broader prospects of popularization and application.


2008 ◽  
Vol 06 (06) ◽  
pp. 1213-1222
Author(s):  
JIN-LIANG GUO ◽  
JIE SONG ◽  
HE-SHAN SONG

We study quantum teleportation by using 1D optical lattice for two particles with nonlinear coupling in an external uniform magnetic field as resources via the standard teleportation protocol T0. The effects of linear coupling J, nonlinear coupling K and magnetic field B on the average fidelity are investigated in detail. It is found that increasing |K| is not only very helpful for enhancing the average fidelity, but also beneficial to improving the critical temperature Tf and magnetic field Bf, beyond which quantum teleportation is inferior to classical communication protocol.


2013 ◽  
Vol 770 ◽  
pp. 374-377
Author(s):  
Apichart Sankote ◽  
Kheamrutai Thamaphat ◽  
Supanee Limsuwan

In this work, a method to measuring the magnitude of a uniform magnetic field in space using current balance was described. A simple experimental set was designed and constructed using low-cost materials. This constructed current balance consists of copper sheet, weight pan, and acrylic sheet. A copper sheet was cut into a U-shape and attached at the end of acrylic balance arm. A weight pan was hanged in the opposite side of the balance arm with high sensitivity to a small torque. The horizontal segment of the U-shaped copper sheet, which the length l was 3 cm, was located inside the influence of an uniform magnetic field produced by two parallel bar magnets with opposite poles facing each other. The magnetic field direction was perpendicular to the horizontal segment. When a current was supplied to the copper sheet, the magnetic force acting on a horizontal segment of length l carrying a current I in a magnetic field B was given by. In the experiment, the current was varied from 0 1 A. For each value of applied current, the magnetic force on a thin straight sheet of length l was measured by adding masses to the pan until the balance arm moved to the equilibrium between opposing gravitational and magnetic forces. The results showed that the magnetic force increased linearly with increasing applied current. By plotting a linear graph of magnetic force versus applied current, the magnetic field B can be calculated from . The calculated and actual values of B were 100.32 and 100.13 mT, respectively. This constructed current balance is an excellent tool for high school and undergraduate fundamental physics courses. Students will be excited when they see the balance arm rising or going down due to magnitude and direction of current flowing in a conductor wire.


Sign in / Sign up

Export Citation Format

Share Document