Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Stephen A. Schwaner ◽  
Robert N. Perry ◽  
Alison M. Kight ◽  
Emily Winder ◽  
Hongli Yang ◽  
...  

Abstract Glaucoma is the second leading cause of blindness worldwide and is characterized by the death of retinal ganglion cells (RGCs), the cells that send vision information to the brain. Their axons exit the eye at the optic nerve head (ONH), the main site of damage in glaucoma. The importance of biomechanics in glaucoma is indicated by the fact that elevated intraocular pressure (IOP) is a causative risk factor for the disease. However, exactly how biomechanical insult leads to RGC death is not understood. Although rat models are widely used to study glaucoma, their ONH biomechanics have not been characterized in depth. Therefore, we aimed to do so through finite element (FE) modeling. Utilizing our previously described method, we constructed and analyzed ONH models with individual-specific geometry in which the sclera was modeled as a matrix reinforced with collagen fibers. We developed eight sets of scleral material parameters based on results from our previous inverse FE study and used them to simulate the effects of elevated IOP in eight model variants of each of seven rat ONHs. Within the optic nerve, highest strains were seen inferiorly, a pattern that was consistent across model geometries and model variants. In addition, changing the collagen fiber direction to be circumferential within the peripapillary sclera resulted in more pronounced decreases in strain than changing scleral stiffness. The results from this study can be used to interpret data from rat glaucoma studies to learn more about how biomechanics affects RGC pathogenesis in glaucoma.

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Stephen A. Schwaner ◽  
Alison M. Kight ◽  
Robert N. Perry ◽  
Marta Pazos ◽  
Hongli Yang ◽  
...  

Glaucoma is the leading cause of irreversible blindness and involves the death of retinal ganglion cells (RGCs). Although biomechanics likely contributes to axonal injury within the optic nerve head (ONH), leading to RGC death, the pathways by which this occurs are not well understood. While rat models of glaucoma are well-suited for mechanistic studies, the anatomy of the rat ONH is different from the human, and the resulting differences in biomechanics have not been characterized. The aim of this study is to describe a methodology for building individual-specific finite element (FE) models of rat ONHs. This method was used to build three rat ONH FE models and compute the biomechanical environment within these ONHs. Initial results show that rat ONH strains are larger and more asymmetric than those seen in human ONH modeling studies. This method provides a framework for building additional models of normotensive and glaucomatous rat ONHs. Comparing model strain patterns with patterns of cellular response seen in studies using rat glaucoma models will help us to learn more about the link between biomechanics and glaucomatous cell death, which in turn may drive the development of novel therapies for glaucoma.


2018 ◽  
Vol 115 (50) ◽  
pp. E11817-E11826 ◽  
Author(s):  
Nina Milosavljevic ◽  
Riccardo Storchi ◽  
Cyril G. Eleftheriou ◽  
Andrea Colins ◽  
Rasmus S. Petersen ◽  
...  

Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain.


2008 ◽  
Vol 28 (2) ◽  
pp. 548-561 ◽  
Author(s):  
I. Soto ◽  
E. Oglesby ◽  
B. P. Buckingham ◽  
J. L. Son ◽  
E. D. O. Roberson ◽  
...  

2021 ◽  
Author(s):  
Sophie Pilkinton ◽  
T.J. Hollingsworth ◽  
Brian Jerkins ◽  
Monica M. Jablonski

Glaucoma is a multifactorial, polygenetic disease with a shared outcome of loss of retinal ganglion cells and their axons, which ultimately results in blindness. The most common risk factor of this disease is elevated intraocular pressure (IOP), although many glaucoma patients have IOPs within the normal physiological range. Throughout disease progression, glial cells in the optic nerve head respond to glaucomatous changes, resulting in glial scar formation as a reaction to injury. This chapter overviews glaucoma as it affects humans and the quest to generate animal models of glaucoma so that we can better understand the pathophysiology of this disease and develop targeted therapies to slow or reverse glaucomatous damage. This chapter then reviews treatment modalities of glaucoma. Revealed herein is the lack of non-IOP-related modalities in the treatment of glaucoma. This finding supports the use of animal models in understanding the development of glaucoma pathophysiology and treatments.


Author(s):  
Ian A. Sigal ◽  
John G. Flanagan ◽  
C. Ross Ethier

Glaucoma is the second most common cause of blindness worldwide, and elevated intraocular pressure (IOP) is the primary risk factor for developing this disease. It has been postulated that IOP-induced mechanical strain on optic nerve head (ONH) glial cells leads to retinal ganglion cell damage and the consequent loss of vision in glaucoma. To better evaluate this theory it is important to understand the biomechanical environment within the ONH. Unfortunately it is very difficult to make measurements in the ONH, and it is particularly difficult to access the region in the ONH where the ganglion cells are thought to be injured, namely the lamina cribrosa. We have therefore developed models of the ONH and used the finite element method (FEM) to predict ONH mechanical response to changes in IOP [1].


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Nicolás M. Díaz ◽  
Luis P. Morera ◽  
Daniela M. Verra ◽  
María A. Contin ◽  
Mario E. Guido

The retina is a key component of the vertebrate circadian system; it is responsible for detecting and transmitting the environmental illumination conditions (day/night cycles) to the brain that synchronize the circadian clock located in the suprachiasmatic nucleus (SCN). For this, retinal ganglion cells (RGCs) project to the SCN and other nonvisual areas. In the chicken, intrinsically photosensitive RGCs (ipRGCs) expressing the photopigment melanopsin (Opn4) transmit photic information and regulate diverse nonvisual tasks. In nonmammalian vertebrates, two genes encodeOpn4: theXenopus(Opn4x) and the mammalian (Opn4m) orthologs. RGCs express bothOpn4genes but are not the only inner retinal cells expressingOpn4x: horizontal cells (HCs) also do so. Here, we further characterize primary cultures of both populations of inner retinal cells (RGCs and HCs) expressingOpn4x. The expression of this nonvisual photopigment, as well as that for different circadian markers such as the clock genesBmal1,Clock,Per2, andCry1, and the key melatonin synthesizing enzyme, arylalkylamineN-acetyltransferase (AA-NAT), appears very early in development in both cell populations. The results clearly suggest that nonvisual Opn4 photoreceptors and endogenous clocks converge all together in these inner retinal cells at early developmental stages.


2020 ◽  
Vol 17 (165) ◽  
pp. 20190695 ◽  
Author(s):  
Stephen A. Schwaner ◽  
Andrew J. Feola ◽  
C. Ross Ethier

Glaucoma is the leading cause of irreversible blindness and is characterized by the death of retinal ganglion cells, which carry vision information from the retina to the brain. Although it is well accepted that biomechanics is an important part of the glaucomatous disease process, the mechanisms by which biomechanical insult, usually due to elevated intraocular pressure (IOP), leads to retinal ganglion cell death are not understood. Rat models of glaucoma afford an opportunity for learning more about these mechanisms, but the biomechanics of the rat optic nerve head (ONH), a primary region of damage in glaucoma, are only just beginning to be characterized. In a previous study, we built finite-element models with individual-specific rat ONH geometries. Here, we developed a parametrized model of the rat ONH and used it to perform a sensitivity study to determine the influence that six geometric parameters and 13 tissue material properties have on rat optic nerve biomechanical strains due to IOP elevation. Strain magnitudes and patterns in the parametrized model generally matched those from individual-specific models, suggesting that the parametrized model sufficiently approximated rat ONH anatomy. Similar to previous studies in human eyes, we found that scleral properties were highly influential: the six parameters with highest influence on optic nerve strains were optic nerve stiffness, IOP, scleral thickness, the degree of alignment of scleral collagen fibres, scleral ground substance stiffness and the scleral collagen fibre uncrimping coefficient. We conclude that a parametrized modelling strategy is an efficient approach that allows insight into rat ONH biomechanics. Further, scleral properties are important influences on rat ONH biomechanics, and additional efforts should be made to better characterize rat scleral collagen fibre organization.


Author(s):  
J. Crawford Downs ◽  
Michael D. Roberts ◽  
Claude F. Burgoyne ◽  
Richard T. Hart

Glaucoma is the second leading cause of blindness in the US and is usually associated with elevated intraocular pressure (IOP). Glaucomatous damage is believed to occur at the optic nerve head (ONH) where the retinal ganglion cell axons pass through an opening in the back of the eye wall on their path to the brain. This opening is spanned by the lamina cribrosa, a fenestrated connective tissue structure that provides structural and nutritional support for the axons as they pass through the eye wall.


Sign in / Sign up

Export Citation Format

Share Document