scholarly journals An Overview of Glaucoma: Bidirectional Translation between Humans and Pre-Clinical Animal Models

2021 ◽  
Author(s):  
Sophie Pilkinton ◽  
T.J. Hollingsworth ◽  
Brian Jerkins ◽  
Monica M. Jablonski

Glaucoma is a multifactorial, polygenetic disease with a shared outcome of loss of retinal ganglion cells and their axons, which ultimately results in blindness. The most common risk factor of this disease is elevated intraocular pressure (IOP), although many glaucoma patients have IOPs within the normal physiological range. Throughout disease progression, glial cells in the optic nerve head respond to glaucomatous changes, resulting in glial scar formation as a reaction to injury. This chapter overviews glaucoma as it affects humans and the quest to generate animal models of glaucoma so that we can better understand the pathophysiology of this disease and develop targeted therapies to slow or reverse glaucomatous damage. This chapter then reviews treatment modalities of glaucoma. Revealed herein is the lack of non-IOP-related modalities in the treatment of glaucoma. This finding supports the use of animal models in understanding the development of glaucoma pathophysiology and treatments.

2008 ◽  
Vol 28 (2) ◽  
pp. 548-561 ◽  
Author(s):  
I. Soto ◽  
E. Oglesby ◽  
B. P. Buckingham ◽  
J. L. Son ◽  
E. D. O. Roberson ◽  
...  

Author(s):  
C. Ross Ethier ◽  
Richie Abel ◽  
E. A. Sander ◽  
John G. Flanagan ◽  
Michael Girard

Glaucoma describes a group of potentially blinding ocular disorders, afflicting c. 60 million people worldwide. Of these, c. 8 million are bilaterally blind, estimated to increase to 11 million by 2020. The central event in glaucoma is slow and irreversible damage of retinal ganglion cells, responsible for carrying visual information from the retina to the brain (Figure 1). Intraocular pressure (IOP) is a risk factor for glaucoma1–4, and significant, sustained IOP reduction is unequivocally beneficial in the clinical management of glaucoma patients2, 3, 5. Unfortunately, we do not understand how elevated IOP leads to the loss of retinal ganglion cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Rachida A. Bouhenni ◽  
Jeffrey Dunmire ◽  
Abby Sewell ◽  
Deepak P. Edward

Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3158
Author(s):  
Annagrazia Adornetto ◽  
Laura Rombolà ◽  
Luigi Antonio Morrone ◽  
Carlo Nucci ◽  
Maria Tiziana Corasaniti ◽  
...  

Glaucoma, a leading cause of irreversible blindness worldwide, is an optic neuropathy characterized by the progressive death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is recognized as the main risk factor. Despite effective IOP-lowering therapies, the disease progresses in a significant number of patients. Therefore, alternative IOP-independent strategies aiming at halting or delaying RGC degeneration is the current therapeutic challenge for glaucoma management. Here, we review the literature on the neuroprotective activities, and the underlying mechanisms, of natural compounds and dietary supplements in experimental and clinical glaucoma.


2011 ◽  
Vol 5 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Yi-sheng Zhong ◽  
Min-hong Xiang ◽  
Wen Ye ◽  
Ping Huang ◽  
Yu Cheng ◽  
...  

Abstract Background: Retinal ganglion cells (RGCs) are protected in rats with acute elevated intraocular pressure (IOP) by Erigeron breviscapus (vant.) hand-mazz (EBHM). However, it is unclear whether EBHM has neuroprotective effect on RGCs in animal with chronic elevated IOP. Objective: Investigate the protective effect of EBHM extract on RGCs in rabbits with chronic elevated IOP. Methods: Unilateral chronic elevated IOP was produced in rabbits by repeated injection of 2% methylcellulose into the anterior chamber. Secondary degeneration was measured with and without EBHM extract treatment for 60 days. At 60 days, the cells density of the RGCs layer, the thickness of retinal nerve fiber layer (RNFL), and the optic nerve axons were observed and analyzed using an image analysis system. The ultrastructural changes of RGCs and optic nerve axons were observed using transmission electron microscopy. Results: Compared with their contralateral control eyes with normal IOP, in the retinas of 3-4 mm from the optic disc, the cells density of the RGCs layer in the eyes with chronic elevated IOP was 23.2±6.5 cells (n = 6) and 36.0±8.9 cells (n = 10) per three 400x fields at 60 days in untreated and EBHM-treated group, respectively. The RNFL thickness in eyes with chronic elevated IOP was 3.4±0.4 μm (n = 6) and 5.0±1.0 μm (n = 10) at 60 days in untreated and EBHM-treated group, respectively. The axons number per 15057.8 μm2 in eyes with chronic elevated IOP was 370.4±41.0 (n = 6) and 439.0±50.8 (n = 10) at 60 days in untreated and EBHM-treated group, respectively. The number of the organelles in RGCs plasm appeared decreased and mitochondrion vacuolated in the elevated IOP eyes of EBHM-treated group, while some dispersive mitochondrion and rough surfaced endoplasmic reticulum and ribosome still existed in the RGCs plasm. The myelin sheath plates condensed and degenerated, and the microfilaments and microtubules decreased or disappeared in the elevated IOP eyes, but the axons degeneration in the chronic elevated IOP with EBHM treatment was less than that in the chronic elevated IOP without treatment. Conclusion: EBHM extract provided a neuroprotective effect on retinal ganglion cells in rabbits with chronic elevated IOP.


2021 ◽  
Vol 8 ◽  
Author(s):  
Junjue Chen ◽  
Jun Sun ◽  
Huan Yu ◽  
Ping Huang ◽  
Yisheng Zhong

Background: Glaucoma is an irreversible and blinding neurodegenerative disease that is characterized by progressive loss of retinal ganglion cells. The current animal models of glaucoma fail to provide a chronic elevated intraocular pressure and cannot maintain the optical media clarity for a long time, which brings some difficulties to the study of glaucoma. Here, we developed a new chronic ocular hypertension model of mice induced by cross-linking hydrogel intracameral injection.Methods: C57BL/6J mice aged 6–8 weeks were randomly divided into the control group and the operation group. The mice of the operation group were injected with cross-linking hydrogel to induce ocular hypertension. Intraocular pressure was measured preoperatively, 3 days after surgery, and weekly until the end of the study. Flash visual evoked potential (F-VEP) was used to observe optic nerve function at different times (preoperatively and 2, 4, and 6 weeks) after chronic ocular hypertension (COH). Retinal TNF-α, IL-1β, and IL-17A protein expression were measured by western blotting in the control group and in mice at 2, 4, and 6 weeks after COH. Microglial cell activation was evaluated by immunofluorescence staining and western blotting. Apoptosis and loss of retinal ganglion cells after 2, 4, and 6 weeks of intracameral injection of cross-linking hydrogel were observed by the TUNEL assay and Brn3a protein labeling. The loss of optic nerve axons in COH mice was evaluated by neurofilament heavy polypeptide protein labeling.Results: Intracameral injection of the cross-linking hydrogel induces increased intraocular pressure (IOP) to a mean value of 19.3 ± 4.1 mmHg, which was sustained for at least 8 weeks. A significant difference in IOP was noted between COH mice and sham-operation mice (p < 0.0001). The success rate was 75%. The average amplitude of F-VEP in mice with COH was reduced (p = 0.0149, 0.0012, and 0.0009 at 2, 4, and 6 weeks after COH vs. the control group, respectively), and the average latent period in mice with COH was longer (p = 0.0290, <0.0001, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively) compared with that in the control group. TNF-α, IL-1β, IL-17A, Iba-1, and CD68 protein expression increased in COH mice. During the processing of COH, the number of microglial cells increased along with cellular morphological changes of rounder bodies and thicker processes compared with the control group. Apoptosis of retinal ganglion cells (RGCs) was clearly observed in mice at 2, 4, and 6 weeks after COH (p = 0.0061, 0.0012, <0.0001, and 0.0371 at 2, 4, and 6 weeks after COH vs. the control group, respectively). The RGC density decreased significantly in the COH mice compared with the control group (p = 0.0042, 0.0036, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively). There was a significant loss of optic nerve axons in mice after intracameral injection of cross-linking hydrogel (p = 0.0095, 0.0002, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively).Conclusions: A single intracameral injection of cross-linking hydrogel can effectively induce chronic ocular hypertension in mice, which causes progressive loss of retinal ganglion cells, increased expression levels of inflammatory cytokines and microglial cell activation, and deterioration of optic nerve function.


Sign in / Sign up

Export Citation Format

Share Document