Thermal characterization of building walls under random boundary conditions

Author(s):  
Emilio Sassine ◽  
Yassine Cherif ◽  
Emmanuel Antczak ◽  
Joseph Dgheim

Abstract This work aims to improve the knowledge on dynamic thermophysical characterization of building envelopes by comparing three numerical methods applied on an experimental wall made of masonry brick. The thermal conductivity λ and the thermal capacity ρcp are determined by performing a data fitting optimization between the experimental measurements of the heat flux and the heat flux resulting from these numerical models. The experimental device consists of a thermal box with a controlled ambiance through a radiator linked to a thermostatic bath and placed inside the thermal box, on the opposite side facing the wall. Three different methods were examined: The Heat Transfer Matrix analytical method (HTM) using the heat transfer matrix, the Finite Element Method (FEM) using COMSOL Multiphysics® software, and the Building Simulation Model method (BSM) using TRNSYS® Type 56 coupled with Genopt® optimization tool. The reproducibility of the methods was also validated through two other datasets (one random and one harmonic). The obtained results were satisfactory for both λ and for ρcp and for the three studied methods with deviations less than 5% between the results of the different methods. The data logging duration for random boundary conditions was found to be around five days while in harmonic boundary conditions two days were sufficient for the solution to converge.

Author(s):  
Ivan Otic

Abstract One important issue in understanding and modeling of turbulent heat transfer is the behavior of fluctuating temperature close to the wall. Common engineering computational approach assumes constant heat flux boundary condition on heated walls. In the present paper constant heat flux boundary condition was assumed and effects of temperature fluctuations are investigated using large eddy simulations (LES) approach. A series of large eddy simulations for two geometries is performed: First, forced convection in channels and second, forced convection over a backward facing step. LES simulation data is statistically analyzed and compared with results of direct numerical simulations (DNS) from the literature which apply three cases of heat flux boundary conditions: 1. ideal heat flux boundary condition, 2. non-ideal heat flux boundary condition, 3. conjugate heat transfer boundary condition. For low Prandtl number flows LES results show that, despite very good agreement for velocities and mean temperature, predictions of temperature fluctuations may have strong deficiencies if simplified boundary conditions are applied.


Author(s):  
D. H. Greisen ◽  
V. P. Manno

Compact Thermal Models (CTMs) utilize a few connected thermal nodes to represent the thermal characteristics of electronic packages. These models are preferable to highly discretized models in preliminary design and system level analysis because of their computational efficiency. Surface heat flux non-uniformities often make it necessary to subdivide the package surfaces into multiple CTM nodes. This division is often quantified as the surface area ratio. This work assesses CTM performance sensitivity to area ratio changes and variation in heat transfer coefficient boundary conditions. CTMs for benchmark TQFP and BGA packages are developed using an admittance matrix approach. While optimum area ratios are identified, a direct correlation between these optimal values and the heat flux distributions computed from fully-discretized models was not obtained. CTM performance was found to be sensitive to changes in the heat transfer coefficient used to generate the CTM parameter values. A critical generating heat transfer coefficient was determined such that the resulting CTM, when optimized for a single boundary condition, was relatively accurate over the whole set of boundary conditions considered. This single boundary condition also provided an upper bound for error. This finding could be significant in future CTM development procedures.


1963 ◽  
Vol 85 (4) ◽  
pp. 371-377 ◽  
Author(s):  
J. T. Yen

Effect of wall electrical conductance on laminar fully developed magnetohydrodynamic heat transfer in a channel with constant wall heat flux and exact magnetohydrodynamic boundary conditions are investigated. For channels with insulated walls, viscous dissipation is more important than joule heating for all Ec and M. For sufficiently large wall conductance, viscous dissipation is dominated by joule heating for all Ec, if M is large enough; both are in turn dominated by wall heat flux if Ec is large enough for all M. These and other conclusions are discussed in this paper.


2012 ◽  
Vol 729 ◽  
pp. 144-149 ◽  
Author(s):  
Imre Felde

The prediction of third type boundary conditions occurring during heat treatment processes is an essential requirement for characterization of heat transfer phenomena. In this work, the performance of four optimization techniques is studied. These models are the Conjugate Gradient Method, the Levenberg-Marquardt Method, the Simplex method and the NSGA II algorithm. The models are used to estimate the heat transfer coefficient during transient heat transfer. The performance of the optimization methods is demonstrated using numerical techniques.


2007 ◽  
Vol 129 (2) ◽  
pp. 167-171 ◽  
Author(s):  
Zs. Kohári ◽  
Gy. Bognár ◽  
Gy. Horváth ◽  
A. Poppe ◽  
M. Rencz ◽  
...  

The thermal behavior of a microcooler has been investigated using two different measurement methods to verify their feasibility. On the one hand structure function derived from the thermal measurements was used, while on the other hand, characterization was done with a heat-flux sensor array. The measurement sample was a square nickel plate microcooler holding 128 microchannels in radial arrangement. In our previous studies it was attached to a power transistor which was used as a dissipator and a temperature sensor. The thermal transient response to a dissipation step of the transistor was recorded in the measurement. The measured transients (cooling curves) were transformed into structure functions from which the partial thermal resistance corresponding to the cooling assembly was identified. In the current study the measurement setup was completed by a heat-flux sensor inbetween the dissipator and the microcooler to be able to verify the results extracted via structure functions. In this way we could compare the heat-transfer coefficient (HTC) values obtained from the identified thermal resistances to those calculated directly from the measured heat-flux values. Good matching of the HTC values resulting from the two different methods was found.


2013 ◽  
Vol 44 (11) ◽  
pp. 1019-1024 ◽  
Author(s):  
Marcin Janicki ◽  
Tomasz Torzewicz ◽  
Zbigniew Kulesza ◽  
Andrzej Napieralski

Sign in / Sign up

Export Citation Format

Share Document