Control of a Robotic Flexible Endoscope Holder for Laparoscopic Surgery

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Yang-Cheng Huang ◽  
Chia-Hao Tsai ◽  
Po-Chih Shih ◽  
Ching-Yuan Chen ◽  
Ming-Chih Ho ◽  
...  

Abstract In this paper, we present an integrated robotic arm with a flexible endoscope for laparoscopy. The endoscope holder is built to mimic a human operator that reacts to the surgeon's push while maintaining both the incision opening through the patient's body and the center of the endoscopic image. An impedance control algorithm is used to react to the surgeon's push when the robotic arm gets in the way. A modified software remote center-of-motion (RCM) constraint formulation then enables simultaneous RCM and impedance control. We derived the kinematic relationship between the robotic arm and line of sight of the flexible endoscope for image center control. Using this kinematic model, we integrated the task control for RCM and surgeon cooperation and the endoscope image centering into a semi-autonomous system. Implementation of the control algorithm with both matlab simulation and the HIWIN RA605-710 robotic arm with a MitCorp F500 flexible endoscope demonstrated the feasibility of the proposed algorithm.

2015 ◽  
Vol 9 (2) ◽  
pp. 182
Author(s):  
Germán Buitrago Salazar ◽  
Olga Lucía Ramos ◽  
Dario Amaya

2013 ◽  
Vol 433-435 ◽  
pp. 1091-1098
Author(s):  
Wei Bo Yu ◽  
Cui Yuan Feng ◽  
Ting Ting Yang ◽  
Hong Jun Li

The air precooling system heat exchange process is a complex control system with features such as: nonlinear, lag and random interference. So choose Generalized Predictive Control Algorithm that has low model dependence, good robustness and control effect, as well as easy to implement. But due to the large amount of calculation of traditional generalized predictive control and can't juggle quickness and overshoot problem, an improved generalized predictive control algorithm is proposed, then carry out the MATLAB simulation, the experimental results show that the algorithm can not only greatly reduce the amount of computation, but also can restrain the overshoot and its rapidity.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Bingshan Hu ◽  
Huanlong Chen ◽  
Liangliang Han ◽  
Hongliu Yu

The space station manipulator does lots of tasks with contact force/torque on orbit. To ensure the safety of the space station and the manipulator, the contact force/torque of manipulator must be controlled. Based on analyzing typical tasks’ working flows and force control requirements, such as ORU (orbit replacement unit) changeout and dual arm collaborative payload transport, an impedance control method based on wrist 6 axis force/torque feedback is designed. For engineering implementation of the impedance control algorithm, the discretization method and impedance control parameters selection principle are also studied. To verify the compliance control algorithm, a ground experiment platform adopting industrial manipulators is developed. In order to eliminate the influence of gravity, a real-time gravity compensation algorithm is proposed. Then, the correctness of real-time gravity compensation and force compliance control algorithm is verified on the experiment platform. Finally, the ORU replacement and dual arm collaborative payload transport experiments are done. Experimental results show that the force compliance control method proposed in this paper can control the contact force and torque at the end of the manipulator when executing typical tasks.


2014 ◽  
Vol 494-495 ◽  
pp. 1084-1087
Author(s):  
Fu Cheng Cao ◽  
Hai Xin Sun ◽  
Li Rong Wang

An iterative learning impedance control algorithm is presented to control a gait rehabilitation robot. According to the circumstances of the patient, the appropriate rehabilitation target impedance parameters are set. With the adoption of iterative learning control law, the impedance error in the closed loop is guaranteed to converge to zero and the iterative trajectories follow the desired trajectories over the entire operation interval. The effectiveness of the proposed method is shown through numerical simulation results.


2014 ◽  
Vol 494-495 ◽  
pp. 1302-1305
Author(s):  
Le Peng Song ◽  
Di Jian Xu ◽  
Jin Liang Shi ◽  
Bi Jia

MATLAB is a set of numerical calculation, symbolic operation, visual modeling, simulation and graphic processing and other functions in one of the very best graphical language. This paper briefly introduces the PID controller is widely used in the field of industry, and the theoretical foundation of the PID controller, and the continuous improvement of system performance index.


1985 ◽  
Vol 107 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Neville Hogan

This three-part paper presents an approach to the control of dynamic interaction between a manipulator and its environment. Part I presented the theoretical reasoning behind impedance control. In Part II the implementation of impedance control is considered. A feedback control algorithm for imposing a desired cartesian impedance on the end-point of a nonlinear manipulator is presented. This algorithm completely eliminates the need to solve the “inverse kinematics problem” in robot motion control. The modulation of end-point impedance without using feedback control is also considered, and it is shown that apparently “redundant” actuators and degrees of freedom such as exist in the primate musculoskeletal system may be used to modulate end-point impedance and may play an essential functional role in the control of dynamic interaction.


Sign in / Sign up

Export Citation Format

Share Document