Experimental Investigation of Combustion Characteristics of a Single Cylinder Diesel Engine at Altitude

2021 ◽  
pp. 1-21
Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Abstract Concern over the change of atmospheric conditions at high altitudes prompted interests in the deteriorated efficiency and emissions from heavy-duty diesel engines. This study utilized a single-cylinder, four stroke, direct injected diesel engine to experimentally investigate the altitude effects on combustion characteristics. High altitude operations were simulated via reducing the intake pressure but maintaining constant engine speed and torque. The results suggested reduced in-cylinder pressure but increased temperature as altitude rose. The combustion analysis indicated a slight longer ignition delay, raising and retarding the pressure rise rate and energy release rate in the premixed combustion process. A smaller excess air ratio contributed to combustion deterioration, reflected from a retarded end of combustion, a longer combustion duration, a reduced thermal efficiency, and an increased level of incomplete combustion. However, the phasing and combustion profile were not significantly impacted, when the altitude was elevated from sea level to 2000m, at least for the engine and conditions investigated in this study. Consequently, it is not necessary to adjust the engine ECU when operated in the U.S., considering that the mean elevations of most states are lower than 2000m.

2012 ◽  
Vol 608-609 ◽  
pp. 269-274
Author(s):  
Qi Min Wu ◽  
Ping Sun ◽  
De Qing Mei ◽  
Zhen Chen

In this paper, two kinds of micro-emulsified biodiesel containing 5.6% and10% water are prepared. The effects of micro-emulsified biodiesel on engine’s power, combustion and emission characteristics are investigated in a DI diesel engine. The results show that under the rated speed and full load operating conditions, the maximum pressure rise rate and peak heat release rate for micro-emulsified biodiesel increase dramatically, while the ignition delay is prolonged and the combustion duration becomes shorter. Compared to base diesel, the HC, CO and smoke emissions from the engine fueled with biodiesel decrease sharply, except for a 9% increased NOx at large loads. However, micro-biodiesel could significantly reduce the NOx and smoke emissions, except for the higher HC and CO emissions at low and medium loads. When fuelled with 10%MB, the NOx and smoke emissions are 9% and 90% lower than that of diesel, respectively. Results reported here suggest that the application of micro-emulsified biodiesel in diesel engines has a potential to improve combustion process and reduce NOx, PM emissions simultaneously.


Author(s):  
Yongcheng Huang ◽  
Yaoting Li ◽  
Kun Luo ◽  
Jiyuan Wang

Although both biodiesel and n-butanol are excellent renewable biofuels, most of the existing research works merely use them as the additives for petroleum diesel. As the main fuel properties of biodiesel and n-butanol are complementary, the biodiesel/ n-butanol blends are promising to be a pure biomass-based substitute for diesel fuel. In this paper, the application of the biodiesel/ n-butanol blends on an agricultural diesel engine was comprehensively investigated, in terms of the combustion, performance, and emission characteristics. First, the biodiesel/ n-butanol blends with 10%, 20%, and 30% n-butanol by weight were prepared and noted as BBu10 (10 wt% n-butanol + 90 wt% biodiesel), BBu20 (20 wt% n-butanol + 80 wt% biodiesel), and BBu30 (30 wt% n-butanol + 70 wt% biodiesel). It was found that adding 30 wt% n-butanol to biodiesel can reduce the viscosity by 39.3% and increase the latent heat of vaporization by 57.3%. Then the engine test results showed that with the addition of n-butanol to biodiesel, the peak values of the cylinder pressure and temperature of the biodiesel/ n-butanol blends were slightly decreased, the peak values of the pressure rise rate and heat release rate of the blends were increased, the fuel ignition was delayed, and the combustion duration was shortened. BBu20 has the approximate ignition characteristics with diesel fuel. Both the brake thermal efficiency and the brake-specific fuel consumption of BBu30 were increased by the average percentages of 2.7% and 14.9%, while NO x, soot, and CO emissions of BBu30 were reduced by the average percentages of 17.6%, 34.1%, and 15.4%, compared to biodiesel. The above variations became more evident as the n-butanol proportion increased.


Author(s):  
M. Mittal ◽  
G. Zhu ◽  
T. Stuecken ◽  
H. J. Schock

Multiple injections used for diesel engines, especially pre- and post-injections, have the potential to reduce combustion noise and emissions with improved engine performance. This paper outlines the combustion characteristics of a single-cylinder diesel engine with multiple injections. The effects of pre-injection (multi-injection) on combustion characteristics are presented in a single-cylinder diesel engine at different engine speeds and load conditions. A common rail fuel system with a solenoid injector, driven by a peak and hold circuit, is used in this work. This enables us to control the number of injections, fuel injection timing and duration, and the fuel rail pressure that can be used to optimize the engine combustion process (e.g., eliminate engine knock). Mass fraction burned and burn durations are determined by analyzing the measured in-cylinder pressure data. Results are compared with the cases when no pre-injection was used, i.e. only main injection, at the same engine speeds and load conditions. In each study, different cases are considered with the variation in main injection timing. It is found that at full-load condition and lower engine speeds pre-injection is an effective method to alter the engine burn rate and hence to eliminate knock.


2014 ◽  
Vol 709 ◽  
pp. 78-82
Author(s):  
Xu Dong Zhang ◽  
Yin Nan Yuan ◽  
Jia Yi Du

This paper has studied the influence of the different ratio on combustion process and emissions of air premixed methanol/diesel dual fuel engine. The research was based on 4B26 diesel engine, and the 3-D numerical simulation on combustion process and emissions of the diesel engine with intake premixed methanol was carried out using AVL FIRE software. The study showed that,with the compression ratio reducing,the ignition delay period prolonged, and the ignition timing delayed, the maximum firing pressure, the peak of pressure rise rate and the maximum combustion temperature in cylinder decreased, the crank angle postponed, the NOX emission decreased and the Soot emission increased obviously.


2011 ◽  
Vol 121-126 ◽  
pp. 2238-2242
Author(s):  
Ming Hai Li ◽  
Feng Jiang ◽  
Biao Liu ◽  
Ming Gao Ouyang

GT-Suite software is used to establish the simulation model of electronic fuel injection system for 16V280ZJ diesel engine. Combustion process simulation calculation is conducted to the direct injection (DI) diesel engine based on a main-post double injection scheme. Simulation parameters are modified based on the comparison with given experimental results. The calculation results effectively reflect the influence of fuel ratio and the interval angle between main and post injection over emission and fuel economy. Finally, in order to improve the engine emissions and reduce the pressure rise rate, we get the optimal injection solution for the main-post injection mode.


Author(s):  
Ze-chao Kan ◽  
Zhi-yuan Hu ◽  
Di-ming Lou ◽  
Zhi-yi Cao ◽  
Jie Cao

One of the ways to meet future emission standards for cars and to limit the peak pressure of a heavy-duty, highly supercharged diesel engine is to reduce the compression ratio. Nevertheless, complications appear because stringent limitations to a reduction in the diesel compression ratio are the start-up requirements, in particular at high altitudes. An experimental study was conducted on the effect of the altitude on the combustion characteristics during the start-up process of a direct-injection midspeed intercooled turbocharged diesel engine with a compression ratio of 14.25:1. Specialized testing was conducted on the low-compression-ratio diesel engine, the intake pressure and the exhaust pressure of which were controlled by a plateau simulation test system to simulate the conditions at altitudes of 0 m, 1000 m, 2000 m, 3000 m, 3750 m and 4500 m. The results indicated that the pressure in the cylinder was lower during the cranking period as the altitude increased and that this caused the ignition operation to become difficult at altitudes above 3000 m. The combustion characteristics are significantly impacted by altitudes above 2000 m. At an altitude of 0–1000 m, the curve pattern of the cycle cylinder pressure had mainly a single peak during the start-up period. When the altitude increased to 2000 m, twin peaks and afterburn appeared in the cycles. Misfire appeared during the start-up period when the altitude increased to 3000 m, the combustion instability increased and the average indicated mean effective pressure decreased rapidly. When the altitude increases, the cycle-to-cycle variations in the peak pressure increased during idle, the ignition and the crank angle position at 50% of the cumulative heat release rate were delayed and the combustion duration was extended.


Author(s):  
Gautam Kalghatgi ◽  
Leif Hildingsson ◽  
Bengt Johansson

Much of the technology in advanced diesel engines, such as high injection pressures, is aimed at overcoming the short ignition delay of conventional diesel fuels to promote premixed combustion in order to reduce NOx and smoke. Previous work in a 2 l single-cylinder diesel engine with a compression ratio of 14 has demonstrated that gasoline fuel, because of its high ignition delay, is very beneficial for premixed compression-ignition compared with a conventional diesel fuel. We have now done similar studies in a smaller—0.537 l—single-cylinder diesel engine with a compression ratio of 15.8. The engine was run on three fuels of very different auto-ignition quality—a typical European diesel fuel with a cetane number (CN) of 56, a typical European gasoline of 95 RON and 85 MON with an estimated CN of 16 and another gasoline of 84 RON and 78 MON (estimated CN of 21). The previous results with gasoline were obtained only at 1200 rpm—here we compare the fuels also at 2000 rpm and 3000 rpm. At 1200 rpm, at low loads (∼4 bars indicated mean effective pressure (IMEP)) when smoke is negligible, NOx levels below 0.4 g/kWh can be easily attained with gasoline without using exhaust gas recirculation (EGR), while this is not possible with the 56 CN European diesel. At these loads, the maximum pressure-rise rate is also significantly lower for gasoline. At 2000 rpm, with 2 bars absolute intake pressure, NOx can be reduced below 0.4 g/kW h with negligible smoke (FSN<0.1) with gasoline between 10 bars and 12 bars IMEP using sufficient EGR, while this is not possible with the diesel fuel. At 3000 rpm, with the intake pressure at 2.4 bars absolute, NOx of 0.4 g/kW h with negligible smoke was attainable with gasoline at 13 bars IMEP. Hydrocarbon and CO emissions are higher for gasoline and will require after-treatment. High peak heat release rates can be alleviated using multiple injections. Large amounts of gasoline, unlike diesel, can be injected very early in the cycle without causing heat release during the compression stroke and this enables the heat release profile to be shaped.


Author(s):  
Gautam Kalghatgi ◽  
Leif Hildingsson ◽  
Bengt Johansson

Much of the technology in advanced diesel engines, such as high injection pressures, is aimed at overcoming the short ignition delay of conventional diesel fuels to promote premixed combustion in order to reduce NOx and smoke. Previous work in a 2 litre single cylinder diesel engine with a compression ratio of 14 has demonstrated that gasoline fuel, because of its high ignition delay, is very beneficial for premixed compression ignition compared to a conventional diesel fuel. We have now done similar studies in a smaller — 0.537 litre — single cylinder diesel engine with a compression ratio of 15.8. The engine was run on three fuels of very different auto-ignition quality — a typical European diesel fuel with a cetane number (CN) of 56, a typical European gasoline of 95 RON and 85 MON with an estimated CN of 16 and another gasoline of 84 RON and 78 MON (estimated CN of 21). The previous results with gasoline were obtained only at 1200 rpm — here we compare the fuels also at 2000 rpm and 3000 rpm. At 1200 rpm, at low loads (∼4 bar IMEP) when smoke is negligible, NOx levels below 0.4 g/kWh can be easily attained with gasoline without using EGR while this is not possible with the 56 CN European diesel. At these loads, the maximum pressure rise rate is also significantly lower for gasoline. At 2000 rpm, with 2 bar absolute intake pressure, NOx can be reduced below 0.4 g/kWh with negligible smoke (FSN <0.1) with gasoline between 10 and 12 bar IMEP using sufficient EGR while this is not possible with the diesel fuel. At 3000 rpm, with the intake pressure at 2.4 bar absolute, NOx of 0.4 g/KWh with negligible smoke was attainable with gasoline at 13 bar IMEP. Hydrocarbon and CO emissions are higher for gasoline and will require after-treatment. High peak heat release rates can be alleviated using multiple injections. Large amounts of gasoline, unlike diesel, can be injected very early in the cycle without causing heat release during the compression stroke and this enables the heat release profile to be shaped.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 755
Author(s):  
Peng Zhang ◽  
Jimin Ni ◽  
Xiuyong Shi ◽  
Sheng Yin ◽  
Dezheng Zhang

The gasoline/natural gas dual-fuel combustion mode has been found to have unique advantages in combustion. The ignition timing has a significant impact on the combustion characteristics of gasoline engines. Thus, here we study the combustion characteristics of gasoline/natural gas dual-fuel combustion mode to determine the details of their respective advantages under cooperative combustion. A direct-injection turbocharged gasoline engine was modified, and an engine experimental platform was built for the coordinated control of gasoline direct-injection and natural gas port injection. A low-speed and low-load operating point was selected, and the in-cylinder pressure, heat release rate, pressure rise rate, combustion temperature, ignition delay, and combustion duration under the coordinated combustion of gasoline and natural gas dual fuel at the ignition moment were studied through bench tests among other typical combustion parameters. The results show that with the increase of the ignition advance angle, the maximum cylinder pressure, heat release rate, pressure rise rate, and maximum combustion temperature increase. The ignition advance angle is 28°CA-BTDC, and PES40 has the best fuel synergy effect and the best power performance improvement. The effect of the advance of the ignition advance angle on the ignition delay and the combustion duration reaches the peak at 20°CA-BTDC–22°CA-BTDC, and the improvement of the two periods is more significant at PES60.


Sign in / Sign up

Export Citation Format

Share Document