Influence of Micro-Emulsified Biodiesel on Combustion and Emission Characteristics of a Turbocharged Diesel Engine

2012 ◽  
Vol 608-609 ◽  
pp. 269-274
Author(s):  
Qi Min Wu ◽  
Ping Sun ◽  
De Qing Mei ◽  
Zhen Chen

In this paper, two kinds of micro-emulsified biodiesel containing 5.6% and10% water are prepared. The effects of micro-emulsified biodiesel on engine’s power, combustion and emission characteristics are investigated in a DI diesel engine. The results show that under the rated speed and full load operating conditions, the maximum pressure rise rate and peak heat release rate for micro-emulsified biodiesel increase dramatically, while the ignition delay is prolonged and the combustion duration becomes shorter. Compared to base diesel, the HC, CO and smoke emissions from the engine fueled with biodiesel decrease sharply, except for a 9% increased NOx at large loads. However, micro-biodiesel could significantly reduce the NOx and smoke emissions, except for the higher HC and CO emissions at low and medium loads. When fuelled with 10%MB, the NOx and smoke emissions are 9% and 90% lower than that of diesel, respectively. Results reported here suggest that the application of micro-emulsified biodiesel in diesel engines has a potential to improve combustion process and reduce NOx, PM emissions simultaneously.

Author(s):  
Yongcheng Huang ◽  
Yaoting Li ◽  
Kun Luo ◽  
Jiyuan Wang

Although both biodiesel and n-butanol are excellent renewable biofuels, most of the existing research works merely use them as the additives for petroleum diesel. As the main fuel properties of biodiesel and n-butanol are complementary, the biodiesel/ n-butanol blends are promising to be a pure biomass-based substitute for diesel fuel. In this paper, the application of the biodiesel/ n-butanol blends on an agricultural diesel engine was comprehensively investigated, in terms of the combustion, performance, and emission characteristics. First, the biodiesel/ n-butanol blends with 10%, 20%, and 30% n-butanol by weight were prepared and noted as BBu10 (10 wt% n-butanol + 90 wt% biodiesel), BBu20 (20 wt% n-butanol + 80 wt% biodiesel), and BBu30 (30 wt% n-butanol + 70 wt% biodiesel). It was found that adding 30 wt% n-butanol to biodiesel can reduce the viscosity by 39.3% and increase the latent heat of vaporization by 57.3%. Then the engine test results showed that with the addition of n-butanol to biodiesel, the peak values of the cylinder pressure and temperature of the biodiesel/ n-butanol blends were slightly decreased, the peak values of the pressure rise rate and heat release rate of the blends were increased, the fuel ignition was delayed, and the combustion duration was shortened. BBu20 has the approximate ignition characteristics with diesel fuel. Both the brake thermal efficiency and the brake-specific fuel consumption of BBu30 were increased by the average percentages of 2.7% and 14.9%, while NO x, soot, and CO emissions of BBu30 were reduced by the average percentages of 17.6%, 34.1%, and 15.4%, compared to biodiesel. The above variations became more evident as the n-butanol proportion increased.


2021 ◽  
pp. 1-21
Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Abstract Concern over the change of atmospheric conditions at high altitudes prompted interests in the deteriorated efficiency and emissions from heavy-duty diesel engines. This study utilized a single-cylinder, four stroke, direct injected diesel engine to experimentally investigate the altitude effects on combustion characteristics. High altitude operations were simulated via reducing the intake pressure but maintaining constant engine speed and torque. The results suggested reduced in-cylinder pressure but increased temperature as altitude rose. The combustion analysis indicated a slight longer ignition delay, raising and retarding the pressure rise rate and energy release rate in the premixed combustion process. A smaller excess air ratio contributed to combustion deterioration, reflected from a retarded end of combustion, a longer combustion duration, a reduced thermal efficiency, and an increased level of incomplete combustion. However, the phasing and combustion profile were not significantly impacted, when the altitude was elevated from sea level to 2000m, at least for the engine and conditions investigated in this study. Consequently, it is not necessary to adjust the engine ECU when operated in the U.S., considering that the mean elevations of most states are lower than 2000m.


2021 ◽  
pp. 146808742098819
Author(s):  
Wang Yang ◽  
Cheng Yong

As a non-intrusive method for engine working condition detection, the engine surface vibration contains rich information about the combustion process and has great potential for the closed-loop control of engines. However, the measured engine surface vibration signals are usually induced by combustion as well as non-combustion excitations and are difficult to be utilized directly. To evaluate some combustion parameters from engine surface vibration, the tests were carried out on a single-cylinder diesel engine and a new method called Fourier Decomposition Method (FDM) was used to extract combustion induced vibration. Simulated and test results verified the ability of the FDM for engine vibration analysis. Based on the extracted vibration signals, the methods for identifying start of combustion, location of maximum pressure rise rate, and location of peak pressure were proposed. The cycle-by-cycle analysis of the results show that the parameters identified based on vibration and in-cylinder pressure have the similar trends, and it suggests that the proposed FDM-based methods can be used for extracting combustion induced vibrations and identifying the combustion parameters.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lyes Tarabet ◽  
Khaled Loubar ◽  
Mohand Said Lounici ◽  
Samir Hanchi ◽  
Mohand Tazerout

Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.


2011 ◽  
Vol 268-270 ◽  
pp. 1313-1316
Author(s):  
Yi Tao

Tests were performed with a light-vehicle diesel engine. Four representative operating conditions in 1600r/min speed have been considered. This article compares the combustion and emission characteristics of engine fueled with Bio-diesel and standard diesel. The results showed that the ignition delay time and combustion duration shorten when fuel with bio-diesel. Bio-diesel contains more oxygen and that contribute to complete combustion of fuel. The combustion of bio-diesel fuel results higher NOx emission and lower HC、CO emissions at all operating conditions. But lower Soot emission because of bio-diesel dose not contains sulfides. At the same time, fuel consumption higher, because calorific value of bio-diesel is lower than standard diesel.


2014 ◽  
Vol 709 ◽  
pp. 78-82
Author(s):  
Xu Dong Zhang ◽  
Yin Nan Yuan ◽  
Jia Yi Du

This paper has studied the influence of the different ratio on combustion process and emissions of air premixed methanol/diesel dual fuel engine. The research was based on 4B26 diesel engine, and the 3-D numerical simulation on combustion process and emissions of the diesel engine with intake premixed methanol was carried out using AVL FIRE software. The study showed that,with the compression ratio reducing,the ignition delay period prolonged, and the ignition timing delayed, the maximum firing pressure, the peak of pressure rise rate and the maximum combustion temperature in cylinder decreased, the crank angle postponed, the NOX emission decreased and the Soot emission increased obviously.


2011 ◽  
Vol 121-126 ◽  
pp. 2238-2242
Author(s):  
Ming Hai Li ◽  
Feng Jiang ◽  
Biao Liu ◽  
Ming Gao Ouyang

GT-Suite software is used to establish the simulation model of electronic fuel injection system for 16V280ZJ diesel engine. Combustion process simulation calculation is conducted to the direct injection (DI) diesel engine based on a main-post double injection scheme. Simulation parameters are modified based on the comparison with given experimental results. The calculation results effectively reflect the influence of fuel ratio and the interval angle between main and post injection over emission and fuel economy. Finally, in order to improve the engine emissions and reduce the pressure rise rate, we get the optimal injection solution for the main-post injection mode.


Sign in / Sign up

Export Citation Format

Share Document