scholarly journals Array-Based Guided Wave Source Location Using Dispersion Compensation

Author(s):  
Andrew Downs ◽  
Ronald Roberts ◽  
Jiming Song

Abstract An important advantage of guided waves is their ability to propagate large distances and yield more information about flaws than bulk waves. Unfortunately, the multi-modal, dispersive nature of guided waves makes them difficult to use for locating flaws. In this work, we present a method and experimental data for removing the deleterious effects of multi-mode dispersion allowing for source localization at frequencies comparable to those of bulk waves. Time domain signals are obtained using a novel 64-element phased array and processed to extract wave number and frequency spectra. By an application of Auld’s electro-mechanical reciprocity relation, mode contributions are extracted approximately using a variational method. Once mode contributions have been obtained, the dispersion for each mode is removed via back-propagation techniques. Excepting the presence of a small artifact at high frequency-thicknesses, experimental data successfully demonstrate the robustness and viability of this approach to guided wave source location.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Zhupeng Zheng ◽  
Ying Lei

Techniques based on ultrasonic guided waves (UGWs) play important roles in the structural health monitoring (SHM) of large-scale civil infrastructures. In this paper, dispersion equations of longitudinal wave propagation in reinforced concrete member are investigated for the purpose of monitoring steels embedded in concrete. For a steel bar embedded in concrete, not the velocity but the attenuation dispersion curves will be affected by the concrete. The effects of steel-to-concrete shear modulus ratio, density ratio, and Poisson’s ratio on propagation characteristics of guided wave in steel bar embedded in concrete were studied by the analysis of the real and imaginary parts of the wave number. The attenuation characteristics of guided waves of steel bar in different conditions including different bar concrete constraint and different diameter of steel bar are also analyzed. Studies of the influence of concrete on propagation characteristics of guided wave in steel bars embedded in concrete will increase the accuracy in judging the structure integrity and promote the level of defect detection for the steel bars embedded in concrete.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Wenjun Wu ◽  
Yuemin Wang

Due to the multimodal and dispersive characteristics of guided waves, guided wave testing signals are always overlapped and difficult to separate for correct interpretations. To this end, a simplified dispersion compensation algorithm is put forward in this paper. The dispersion elimination is accomplished by compensating the second-order nonlinear phase shift of guided wave signals, which is the cause of the dispersion when narrow band exciting signals are used. This algorithm is easy to implement and has no need of prior knowledge of the guided wave dispersion relationship. Considering that the center frequency, which is a key parameter for this algorithm, is nearly impossible to determine accurately in practical applications, the effect of the center frequency deviation on the algorithm is further studied. Both theoretical analysis and numerical simulation indicate the insensitivity of the algorithm to the deviation of the center frequency, and hence, there is no need to determine the center frequency accurately, facilitating the practical use of the algorithm. Based on this simplified dispersion compensation algorithm and in cooperation with the matching pursuit method, the mode separation is further performed for interpreting of overlapped guided wave signals. Dispersion compensation is first applied to the testing signal with respect to a certain mode which will compress the waveform of the mode while the others still spread. Then, this compressed waveform is separated with the Gabor based matching pursuit method. Both simulation and experiment are designed to demonstrate the effectiveness of the proposed methods.


1994 ◽  
Vol 61 (2) ◽  
pp. 330-338 ◽  
Author(s):  
J. J. Ditri ◽  
J. L. Rose

The excitation of guided wave modes in generally anisotropic layers by finite sized strip sources placed on the surfaces of the layer is examined. The general problem of arbitrarily applied harmonic surface tractions is first solved using the normal mode expansion technique in conjunction with the complex reciprocity relation of elastodynamics. This general solution is then specialized to loading situations modelling those commonly used to excite guided waves in layers for use in nondestructive evaluation. The amplitudes of the generated modes are written as the product of an “excitation function” which depends only on the distribution of the applied tractions and an “excitability function” which depends only on the properties of the specific mode(s) being excited and which determines how receptive the modes are to the applied tractions. Expressions are obtained for the −9 dB wave number and phase velocity bandwidths (σβ and σν respectively) which determine the widths of the wavenumber or phase velocity excitation spectra at the −9 dB generation point. Finally, the problem of transient loading is addressed by superimposing time harmonic solutions via an integration over the dispersion curves of the layer.


2019 ◽  
Vol 19 (6) ◽  
pp. 1666-1684 ◽  
Author(s):  
Philip W Loveday ◽  
Craig S Long ◽  
Dineo A Ramatlo

An experimental monitoring system was installed on an operational heavy haul rail track. The system used two piezoelectric transducers mounted under the head of the rail to transmit and receive ultrasonic guided waves in pulse-echo mode and data were captured over a 2-week period. An artificial defect was introduced by glueing a small mass under the head of the rail at a distance of 370 m from the transducers. The size of the signal reflected by the mass varied as the glue joint deteriorated. The measurements were reordered to simulate a monotonically growing defect. The pre-processing of the captured time signals included averaging, filtering, phased array processing, dispersion compensation, signal stretching and amplitude scaling. Singular value decomposition and independent component analysis of the data were performed. Independent component analysis, with dimension reduction achieved by retaining only the larger principal components, produced the best defect detection. The defect signature was separated as an independent component, and the weight of this component increased monotonically. The results indicate that a transverse defect in the rail head could be detected and located at long range by a system comprising only two transducers. The variation of the signals due to changing environmental and operational conditions limits the size of defect that can be detected, but it is expected that even a relatively small defect, which is significantly smaller than the critical size, would be detected.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401882069
Author(s):  
Xiaoming Zhang ◽  
Zhi Li ◽  
Jiangong Yu

The vibration modes of an elastic plate are usually divided into propagating and non-propagating (evanescent) kinds. Non-propagating wave modes are very important for guided wave inspection of defect size and shape. But it is difficult to obtain the complex solutions of the transcendental dispersion equation, corresponding to the non-propagating wave. In this article, we present an improved Legendre polynomial method to calculate the complex-valued dispersion and study properties of the non-propagating wave in a piezoelectric spherical plate. Comparisons with other related studies are conducted to validate the correctness of the presented method. The complete dispersion and attenuation curves are plotted in three-dimensional frequency-complex wave number space. The influences of material piezoelectricity and radius–thickness ratio on non-propagating waves in piezoelectric spherical plates are investigated. The amplitude distributions of the electric potential and displacement are also discussed in detail. All the results presented in this work can provide theoretical guidance for ultrasonic nondestructive evaluation and are promising to be applied to improve the resolution of piezoelectric transducers.


2018 ◽  
Vol 774 ◽  
pp. 295-302
Author(s):  
Jabid E. Quiroga Mendez ◽  
Octavio Andrés González-Estrada ◽  
Diego F. Villegas

A Semi-Analytical Finite Element (SAFE) formulation is applied to determinethe dispersion curves in homogeneous and isotropic cylindrical waveguides subject touniaxial stress. Bulk waves are required for estimating the guided wave dispersion curvesand acoustoelasticity states a stress dependence of the ultrasound bulk velocities. Therefore,acoustoelasticity influences the wave field of the guided waves. Effective Elastic Constants(EEC) has emerged as a less complex alternative to deal with the acoustoelasticity; allowinga stressed material to be assumed as an unstressed material with EEC which considers thedisturbance linked to the presence of stress. In this approach the isotropic specimen subjectto load is studied by proposing an equivalent stress-free with a modified elasticity matrixwhich terms are the EEC. EEC provides an approximate stress-strain relation facilitating thedetermination of the dispersion curves using the well-studied numerical solution for the stressfreecases reducing the complexity of the numerical implementation. Therefore, a numericalmethod combining the SAFE and EEC is presented as a tool for the dispersion curve generationin stressed cylindrical specimens. The results of this methodology are verified by comparingthem with an approach previously reported in the literature based on SAFE including the fullstrain-displacement relation


Author(s):  
Xiaoyi Sun ◽  
Zhenhua Tian ◽  
Bin Lin ◽  
Lingyu Yu

This paper presents a damage detection and imaging approach using guided waves and through the use of optical fiber Bragg Grating (FBG) sensors for structural health monitoring (SHM) purpose. An FBG array composed with four linearly aligned FBG sensors for guided wave sensing is designed. It is found that FBG sensors are optimized for sensing guided wave coming along the axial direction yet minimized for those along the normal direction. To overcome this limitation and allow for all directional sensing, a FBG phased array beamforming algorithm is derived based on the commonly used delay-and-sum beamforming algorithm principle. The work continues to evaluate the detection capability of the FBG array through two experimental studies on an aluminum plate: (a) guided wave source localization; (b) surface damage detection. The results indicates that both targets are successfully detected and agree well with their actual locations and thus confirms the capability of using presented FBG phased array for rapidly inspecting a large area with limited access.


2021 ◽  
pp. 147592172110053
Author(s):  
Qian Ji ◽  
Li Jian-Bin ◽  
Liu Fan-Rui ◽  
Zhou Jian-Ting ◽  
Wang Xu

The seven-wire strands are the crucial components of prestressed structures, though their performance inevitably degrades with the passage of time. The ultrasonic guided wave methods have been intensely studied, owing to its tremendous potential for full-scale applications, among the existing nondestructive testing methods, for evaluating the stress status of strands. We have employed the theoretical and finite element methods to solve the dispersion curve of single wire and steel strands under various boundary conditions. Thereafter, the singular value decomposition was adopted to work with the simulated and experimental signals for extracting a feature vector that carries valuable stress status information. The effectiveness of the vector was verified by analyzing the relationship between the vector and the stress level. The vector was also used as an input to establish a support vector regression model. The accuracy of the model has been discussed for different sample sizes. The results show that the fundamental mode dispersion curve offset on the high-frequency part and cut-off frequency increases as the boundary constraints enhance. Simulated and experimental results have demonstrated the effectiveness and potential of the proposed support vector regression method for evaluating the stress level in the strands. This method performs well even at low stress levels and the reliability can be enhanced by adding more samples.


Author(s):  
Kuan Ye ◽  
Kai Zhou ◽  
Ren Zhigang ◽  
Ruizhe Zhang ◽  
Chunsheng Li ◽  
...  

The power transmission tower’s ground electrode defect will affect its normal current dispersion function and threaten the power system’s safe and stable operation and even personal safety. Aiming at the problem that the buried grounding grid is difficult to be detected, this paper proposes a method for identifying the ground electrode defects of transmission towers based on single-side multi-point excited ultrasonic guided waves. The geometric model, ultrasonic excitation model, and physical model are established, and the feasibility of ultrasonic guided wave detection is verified through the simulation and experiment. In actual inspection, it is equally important to determine the specific location of the defect. Therefore, a multi-point excitation method is proposed to determine the defect’s actual position by combining the ultrasonic guided wave signals at different excitation positions. Besides, the precise quantification of flat steel grounding electrode defects is achieved through the feature extraction-neural network method. Field test results show that, compared with the commercial double-sided excitation transducer, the single-sided excitation transducer proposed in this paper has a lower defect quantization error in defect quantification. The average quantization error is reduced by approximately 76%.


Sign in / Sign up

Export Citation Format

Share Document