Ultrathin and porous NiCo2O4 nanosheets based 3D hierarchical electrode materials for high-performance asymmetric supercapacitor

Author(s):  
Fuyong Ren ◽  
Zhixiang Tong ◽  
Shufen Tan ◽  
Junnan Yao ◽  
Lijun Pei ◽  
...  

Abstract It is well-known that designing unique morphology and structure of electrode materials is an effective strategy to achieve high performance supercapacitors. Herein, the ultrathin and porous NiCo2O4 nanosheets based 3D hierarchical electrode materials were synthesized via a simple and cost effective solvothermal method and subsequent annealing prosses. Since the ultrathin and porous nanosheets could accelerate the transmission of ions and provide numerous active sites, the obtained NiCo2O4 nanosheets based electrode exhibited excellent electrochemical performance with a high area capacity of 5.38 F cm−2 (2690 F g−1) at a current density of 10 mA cm−2 and a good rate performance of 41% capacitance retention at 50 mA cm−2. Furthermore, the corresponding asymmetry supercapacitor was assembled by using the resulted NiCo2O4 nanosheets and active carbon as positive electrode and negative electrode respectively. As expected, the corresponding supercapacitor delivered superior energy density of 52.6 Wh kg−1 at power density of 1.1 kW kg−1 and an extraordinary capacitive retention of 80.9% after 3,000 cycles at 20 mA cm−2. The high energy storage performances suggested that the obtained ultrathin and porous NiCo2O4 nanosheets based 3D hierarchical electrode materials could be prospective candidate in the field of energy storage.

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 289 ◽  
Author(s):  
Kugalur Shanmugam Ranjith ◽  
Ganji Seeta Rama Raju ◽  
Nilesh R. Chodankar ◽  
Seyed Majid Ghoreishian ◽  
Cheol Hwan Kwak ◽  
...  

A flexible asymmetric supercapacitor (ASC) with high electrochemical performance was constructed using reduced graphene oxide (rGO)-wrapped redox-active metal oxide-based negative and positive electrodes. Thin layered rGO functionality on the positive and the negative electrode surfaces has promoted the feasible surface-active sites and enhances the electrochemical response with a wide operating voltage window. Herein we report the controlled growth of rGO-wrapped tubular FeMoO4 nanofibers (NFs) via electrospinning followed by surface functionalization as a negative electrode. The tubular structure offers the ultrathin-layer decoration of rGO inside and outside of the tubular walls with uniform wrapping. The rGO-wrapped tubular FeMoO4 NF electrode exhibited a high specific capacitance of 135.2 F g−1 in Na2SO4 neutral electrolyte with an excellent rate capability and cycling stability (96.45% in 5000 cycles) at high current density. Meanwhile, the hydrothermally synthesized binder-free rGO/MnO2 nanorods on carbon cloth (rGO-MnO2@CC) were selected as cathode materials due to their high capacitance and high conductivity. Moreover, the ASC device was fabricated using rGO-wrapped FeMoO4 on carbon cloth (rGO-FeMoO4@CC) as the negative electrode and rGO-MnO2@CC as the positive electrode (rGO-FeMoO4@CC/rGO-MnO2@CC). The rationally designed ASC device delivered an excellent energy density of 38.8 W h kg−1 with a wide operating voltage window of 0.0–1.8 V. The hybrid ASC showed excellent cycling stability of 93.37% capacitance retention for 5000 cycles. Thus, the developed rGO-wrapped FeMoO4 nanotubes and MnO2 nanorods are promising hybrid electrode materials for the development of wide-potential ASCs with high energy and power density.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Goli Nagaraju ◽  
S. Chandra Sekhar ◽  
Bhimanaboina Ramulu ◽  
Sk. Khaja Hussain ◽  
D. Narsimulu ◽  
...  

Abstract Designing rationally combined metal–organic frameworks (MOFs) with multifunctional nanogeometries is of significant research interest to enable the electrochemical properties in advanced energy storage devices. Herein, we explored a new class of binder-free dual-layered Ni–Co–Mn-based MOFs (NCM-based MOFs) with three-dimensional (3D)-on-2D nanoarchitectures through a polarity-induced solution-phase method for high-performance supercapatteries. The hierarchical NCM-based MOFs having grown on nickel foam exhibit a battery-type charge storage mechanism with superior areal capacity (1311.4 μAh cm−2 at 5 mA cm−2), good rate capability (61.8%; 811.67 μAh cm−2 at 50 mA cm−2), and an excellent cycling durability. The superior charge storage properties are ascribed to the synergistic features, higher accessible active sites of dual-layered nanogeometries, and exalted redox chemistry of multi metallic guest species, respectively. The bilayered NCM-based MOFs are further employed as a battery-type electrode for the fabrication of supercapattery paradigm with biomass-derived nitrogen/oxygen doped porous carbon as a negative electrode, which demonstrates excellent capacity of 1.6 mAh cm−2 along with high energy and power densities of 1.21 mWh cm−2 and 32.49 mW cm−2, respectively. Following, the MOF-based supercapattery was further assembled with a renewable solar power harvester to use as a self-charging station for various portable electronic applications.


2017 ◽  
Vol 735 ◽  
pp. 189-193
Author(s):  
Priscila Tamiasso-Martinhon ◽  
Sousa Célia

Energy storage and conversion are major problems of our modern society. In the last decades, in order to minimize these problems, a growing research activity was dedicated to the development of new systems involved in this energy field. The fabrication of supercapacitors based on new materials, such as electrochemical double layer capacitor, can offer attractive potentialities. Indeed, these supercapacitors are able to provide a power density ten times higher than that supplied by batteries, and allow a larger number of charge and discharge cycles. The performance of supercapacitors highly depends on the properties of electrode materials. Ternary composites combining both capacitive and faradaic reactions can address the improvement necessary for relatively cost effective and performance of supercapacitors. Particularly, ternary nanocomposites systems of carbon nanotubes (CNTs), conducting polymer (CPs) films and metal oxide/hydroxide; CNT:CP:Metal oxide; has been proposed as potential electrodes for electrochemical supercapacitors, as alternatives to overcome the drawbacks associated with single component electrodes for the construction of high performance supercapacitors.


2021 ◽  
Vol 13 (3) ◽  
pp. 490-496
Author(s):  
Wei Pan ◽  
Mu Zhang ◽  
Wenyi Tang ◽  
Yanyan Man ◽  
Kunfeng Chen ◽  
...  

Tremendous research works including nanofabrication techniques and crystal defect preparation approaches have been applied to enhance the capacitance of bulk materials. However, a comprehensive understanding of active sites in the reaction process is an enigma for all researchers. This work reported an environmentally friendly system with a basic polymerized ferric sulfate (BPFS) electrolyte and electroactive graphite electrode, which achieved high area capacitance and showed the different characteristics of active sites. This enhanced energy storage system shows the evidence that carbon materials are electrochemically activated as a result that active groups could react with iron groups in aqueous solutions. A high area specific capacitance of 12 F cm-2(1255 F g-1) is obtained in a mixed BPFS at 5 mV s-1 in a potential window of 2.1 V in a three-electrode cell. In an aqueous solution capacitor, a capacity of 4.8 F cm-2 at 30 mA from 0 V to 1.5 V is achieved at room temperature. It has the potential to develop a low-cost, high energy storage, and high safety system, which can be a lead-acid battery substitute.


2018 ◽  
Vol 11 (06) ◽  
pp. 1840006 ◽  
Author(s):  
Yalan Huang ◽  
Wanyi He ◽  
Peng Zhang ◽  
Xihong Lu

The development of manganese dioxide (MnO[Formula: see text] as the cathode for aqueous Zn-MnO2 batteries is hindered by poor capacity. Herein, we propose a high-capacity MnO2 cathode constructed by engineering it with N-doping (N-MnO[Formula: see text] for a high-performance Zn-MnO2 battery. Benefiting from N element doping, the conductivity of N-MnO2 nanorods (NRs) electrode has been improved and the dissolution of the cathode during cycling can be relieved to some extent. The fabricated Zn-N-MnO2 battery based on the N-MnO2 cathode and a Zn foil anode presents an a real capacity of 0.31[Formula: see text]mAh[Formula: see text]cm[Formula: see text] at 2[Formula: see text]mA[Formula: see text]cm[Formula: see text], together with a remarkable energy density of 154.3[Formula: see text]Wh[Formula: see text]kg[Formula: see text] and a peak power density of 6914.7[Formula: see text]W[Formula: see text]kg[Formula: see text], substantially higher than most recently reported energy storage devices. The strategy of N doping can also bring intensive interest for other electrode materials for energy storage systems.


2019 ◽  
Vol 7 (43) ◽  
pp. 25120-25131 ◽  
Author(s):  
Taotao Sun ◽  
Liguo Yue ◽  
Ning Wu ◽  
Mengni Xu ◽  
Wenhu Yang ◽  
...  

High-performance electrode materials were obtained by isomorphism and intercalation methods, resulting in multi-types of redox reaction centers and a bridge for charge transfer.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102504-102512 ◽  
Author(s):  
J. M. Gonçalves ◽  
R. R. Guimarães ◽  
C. V. Nunes ◽  
A. Duarte ◽  
B. B. N. S. Brandão ◽  
...  

Described herein is a composite material based on rGO and α-NiCo(OH)2 nanoparticles combining very fast charge/discharge processes with the high energy density of batteries, suitable for application in high performance energy storage devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 155
Author(s):  
Bin Zhang ◽  
Ping Liu ◽  
Zijiong Li ◽  
Xiaohui Song

Designing a novel, efficient, and cost-effective nanostructure with the advantage of robust morphology and outstanding conductivity is highly promising for the electrode materials of high-performance electrochemical storage device. In this paper, a series of honeycombed perovskite-type Sr-doped LaNiO3 nanosheets with abundant porous structure were successfully synthesized by accurately controlling the Sr-doped content. The study showed that the optimal LSNO-0.4 (La0.6Sr0.4NiO3-δ) electrode exhibited excellent electrochemical performance, which showed a high capacity of 115.88 mAh g−1 at 0.6 A g−1. Furthermore, a hybrid supercapacitor device (LSNO//AC) based on LSNO-0.4 composites and activated carbon (AC) showed a high energy density of 17.94 W h kg−1, a high power density of 1600 W kg−1, and an outstanding long-term stability with 104.4% capacity retention after 16,000 cycles, showing an excellent electrochemical performance and a promising application as an electrode for energy storage.


Sign in / Sign up

Export Citation Format

Share Document